Search results
Results from the WOW.Com Content Network
Oxidative phosphorylation uses these molecules and O 2 to produce ATP, which is used throughout the cell whenever energy is needed. During oxidative phosphorylation, electrons are transferred from the electron donors to a series of electron acceptors in a series of redox reactions ending in oxygen, whose reaction releases half of the total ...
Oxidative phosphorylation – The last stage of the aerobic system produces the largest yield of ATP – a total of 34 ATP molecules. It is called oxidative phosphorylation because oxygen is the final acceptor of electrons and hydrogen ions (hence oxidative) and an extra phosphate is added to ADP to form ATP (hence phosphorylation).
The overall process of creating energy in this fashion is termed oxidative phosphorylation. The same process takes place in the mitochondria, where ATP synthase is located in the inner mitochondrial membrane and the F 1-part projects into the mitochondrial matrix. By pumping proton cations into the matrix, the ATP-synthase converts ADP into ATP.
The electron transport chain in the mitochondrion is the site of oxidative phosphorylation in eukaryotes.It mediates the reaction between NADH or succinate generated in the citric acid cycle and oxygen to power ATP synthase.
The reactions involved in respiration are catabolic reactions, which break large molecules into smaller ones, producing large amounts of energy (ATP). Respiration is one of the key ways a cell releases chemical energy to fuel cellular activity. The overall reaction occurs in a series of biochemical steps, some of which are redox reactions.
The reactions of the pathway were elucidated in the early 1950s by Bernard Horecker and co-workers. [2] [3] There are two distinct phases in the pathway. The first is the oxidative phase, in which NADPH is generated, and the second is the non-oxidative synthesis of five-carbon sugars.
In the overall reaction, two ubiquinols are oxidized to ubiquinones and one ubiquinone is reduced to ubiquinol. In the complete mechanism, two electrons are transferred from ubiquinol to ubiquinone, via two cytochrome c intermediates. Overall: 2 x QH 2 oxidised to Q; 1 x Q reduced to QH 2; 2 x Cyt c reduced; 4 x H + released into intermembrane ...
The citric acid cycle produces NADH and FADH2 through oxidation that will be reduced in oxidative phosphorylation to produce ATP. [ 2 ] [ 3 ] The cytosolic, intermembrane space , compartment has a higher aqueous:protein content of around 3.8 μL/mg protein relative to that occurring in mitochondrial matrix where such levels typically are near 0 ...