Search results
Results from the WOW.Com Content Network
This file contains additional information, probably added from the digital camera or scanner used to create or digitize it. If the file has been modified from its original state, some details may not fully reflect the modified file.
The alkali–carbonate reaction is an alteration process first suspected in the 1950s in Canada for the degradation of concrete containing dolomite aggregates. [ 1 ] [ 2 ] Alkali from the cement might react with the dolomite crystals present in the aggregate inducing the production of brucite , (MgOH) 2 , and calcite (CaCO 3 ).
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Crystal structure of calcite. Calcium carbonate is a chemical compound with the chemical formula Ca CO 3.It is a common substance found in rocks as the minerals calcite and aragonite, most notably in chalk and limestone, eggshells, gastropod shells, shellfish skeletons and pearls.
The tables below provides information on the variation of solubility of different substances (mostly inorganic compounds) in water with temperature, at one atmosphere pressure. Units of solubility are given in grams of substance per 100 millilitres of water (g/(100 mL)), unless shown otherwise. The substances are listed in alphabetical order.
In even a slight presence of water, carbonic acid dehydrates to carbon dioxide and water, which then catalyzes further decomposition. [6] For this reason, carbon dioxide can be considered the carbonic acid anhydride. The hydration equilibrium constant at 25 °C is [H 2 CO 3]/[CO 2] ≈ 1.7×10 −3 in pure water [12] and ≈ 1.2×10 −3 in ...
HCl → H + + Cl −. If HCl is added to the H 2 S solution, H + is a common ion and creates a common ion effect. Due to the increase in concentration of H + ions from the added HCl, the equilibrium of the dissociation of H 2 S shifts to the left and keeps the value of K a constant.
For example, hydrochloric acid, HCl, is a strong acid. HCl(aq) → H + (aq) + Cl − (aq) A strong base is one that is fully dissociated in aqueous solution. For example, sodium hydroxide, NaOH, is a strong base. NaOH(aq) → Na + (aq) + OH − (aq) Therefore, when a strong acid reacts with a strong base the neutralization reaction can be ...