Search results
Results from the WOW.Com Content Network
One can take the union of several sets simultaneously. For example, the union of three sets A, B, and C contains all elements of A, all elements of B, and all elements of C, and nothing else. Thus, x is an element of A ∪ B ∪ C if and only if x is in at least one of A, B, and C. A finite union is the union of a finite number of sets; the ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
It is the algebra of the set-theoretic operations of union, intersection and complementation, and the relations of equality and inclusion. For a basic introduction to sets see the article on sets, for a fuller account see naive set theory, and for a full rigorous axiomatic treatment see axiomatic set theory.
Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects.Although objects of any kind can be collected into a set, set theory – as a branch of mathematics – is mostly concerned with those that are relevant to mathematics as a whole.
In axiomatic set theory, the axiom of union is one of the axioms of Zermelo–Fraenkel set theory.This axiom was introduced by Ernst Zermelo. [1]Informally, the axiom states that for each set x there is a set y whose elements are precisely the elements of the elements of x.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The simple theorems in the algebra of sets are some of the elementary properties of the algebra of union (infix operator: ∪), intersection (infix operator: ∩), and set complement (postfix ') of sets. These properties assume the existence of at least two sets: a given universal set, denoted U, and the empty set, denoted {}.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...