Search results
Results from the WOW.Com Content Network
Time-domain diffuse optics [1] or time-resolved functional near-infrared spectroscopy is a branch of functional near-Infrared spectroscopy which deals with light propagation in diffusive media. There are three main approaches to diffuse optics namely continuous wave [ 2 ] (CW), frequency domain [ 3 ] (FD) and time-domain [ 4 ] (TD).
In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques.Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material.
When an area element is radiating as a result of being illuminated by an external source, the irradiance (energy or photons /time/area) landing on that area element will be proportional to the cosine of the angle between the illuminating source and the normal. A Lambertian scatterer will then scatter this light according to the same cosine law ...
The method or technique of infrared spectroscopy is conducted with an instrument called an infrared spectrometer (or spectrophotometer) which produces an infrared spectrum. An IR spectrum can be visualized in a graph of infrared light absorbance (or transmittance ) on the vertical axis vs. frequency , wavenumber or wavelength on the horizontal ...
Fourier-transform spectroscopy is a less intuitive way to get the same information. Rather than allowing only one wavelength at a time to pass through to the detector, this technique lets through a beam containing many different wavelengths of light at once, and measures the total beam intensity.
To solve this problem, synthetic array heterodyne detection (SAHD) was developed. [2] In SAHD, large imaging arrays can be multiplexed into virtual pixels on a single element detector with single readout lead, single electrical filter, and single recording system. [13]
Time resolved crystallography utilizes X-ray crystallography imaging to visualize reactions in four dimensions (x, y, z and time). This enables the studies of dynamical changes that occur in for example enzymes during their catalysis.
Infrared communications are useful for indoor use in areas of high population density. IR does not penetrate walls and so does not interfere with other devices in adjoining rooms. Infrared is the most common way for remote controls to command appliances. Infrared remote control protocols like RC-5, SIRC, are used to communicate with infrared.