enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Model-free (reinforcement learning) - Wikipedia

    en.wikipedia.org/wiki/Model-free_(reinforcement...

    In reinforcement learning (RL), a model-free algorithm is an algorithm which does not estimate the transition probability distribution (and the reward function) associated with the Markov decision process (MDP), [1] which, in RL, represents the problem to be solved. The transition probability distribution (or transition model) and the reward ...

  3. Vowpal Wabbit - Wikipedia

    en.wikipedia.org/wiki/Vowpal_Wabbit

    Vowpal Wabbit's interactive learning support is particularly notable including Contextual Bandits, Active Learning, and forms of guided Reinforcement Learning. Vowpal Wabbit provides an efficient scalable out-of-core implementation with support for a number of machine learning reductions , importance weighting, and a selection of different loss ...

  4. Reinforcement learning from human feedback - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning...

    Human feedback is commonly collected by prompting humans to rank instances of the agent's behavior. [15] [17] [18] These rankings can then be used to score outputs, for example, using the Elo rating system, which is an algorithm for calculating the relative skill levels of players in a game based only on the outcome of each game. [3]

  5. Reinforcement learning - Wikipedia

    en.wikipedia.org/wiki/Reinforcement_learning

    Reinforcement learning (RL) is an interdisciplinary area of machine learning and optimal control concerned with how an intelligent agent should take actions in a dynamic environment in order to maximize a reward signal. Reinforcement learning is one of the three basic machine learning paradigms, alongside supervised learning and unsupervised ...

  6. Proximal policy optimization - Wikipedia

    en.wikipedia.org/wiki/Proximal_Policy_Optimization

    Proximal policy optimization (PPO) is a reinforcement learning (RL) algorithm for training an intelligent agent's decision function to accomplish difficult tasks. PPO was developed by John Schulman in 2017, [1] and had become the default RL algorithm at the US artificial intelligence company OpenAI. [2]

  7. Q-learning - Wikipedia

    en.wikipedia.org/wiki/Q-learning

    Q-learning is a model-free reinforcement learning algorithm that teaches an agent to assign values to each action it might take, conditioned on the agent being in a particular state. It does not require a model of the environment (hence "model-free"), and it can handle problems with stochastic transitions and rewards without requiring adaptations.

  8. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo, a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and inference performance across major cloud platforms.

  9. Mixture of experts - Wikipedia

    en.wikipedia.org/wiki/Mixture_of_experts

    The key design desideratum for MoE in deep learning is to reduce computing cost. Consequently, for each query, only a small subset of the experts should be queried. This makes MoE in deep learning different from classical MoE. In classical MoE, the output for each query is a weighted sum of all experts' outputs. In deep learning MoE, the output ...