Search results
Results from the WOW.Com Content Network
Plants that contribute to nitrogen fixation include those of the legume family—Fabaceae— with taxa such as kudzu, clover, soybean, alfalfa, lupin, peanut and rooibos. [45] They contain symbiotic rhizobia bacteria within nodules in their root systems , producing nitrogen compounds that help the plant to grow and compete with other plants. [ 58 ]
For example, the detection and measurement of gene expression has enabled researchers to determine which genes are up-regulated in the plant and fungus under various nitrogen conditions. Another important tool is the use of the nitrogen isotope [[15 N]], which can be distinguished from the more common 14 N isotope. Nitrogen-containing compounds ...
Nitrogen is the most critical element obtained by plants from the soil, to the exception of moist tropical forests where phosphorus is the limiting soil nutrient, [36] and nitrogen deficiency often limits plant growth. [37] Plants can use nitrogen as either the ammonium cation (NH 4 +) or the anion nitrate (NO 3 −).
Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite .
Nitrogen assimilation is the formation of organic nitrogen compounds like amino acids from inorganic nitrogen compounds present in the environment. Organisms like plants, fungi and certain bacteria that can fix nitrogen gas (N 2) depend on the ability to assimilate nitrate or ammonia for their needs. Other organisms, like animals, depend ...
As one of the macronutrients, nitrogen plays an important role in plant growth. The nitrogen cycle is affected by environmental factors. For example, in the subarctic heath, increase in temperature can cause nitrogen fixation to increase or decrease based on season, while overall climate warming indirectly caused the vegetation change which in ...
In plants with bacterial symbionts, which fix atmospheric nitrogen, the energetic cost to the plant to acquire one molecule of NH 3 from atmospheric N 2 is 2.36 CO 2. [13] It is essential that plants uptake nitrogen from the soil or rely on symbionts to fix it from the atmosphere to assure growth, reproduction and long-term survival.
Nod factors produce the differentiation of plant tissue in root hairs into nodules where the bacteria reside and are able to fix nitrogen from the atmosphere for the plant in exchange for photosynthates and the appropriate environment for nitrogen fixation. [1] One of the most important features provided by the plant in this symbiosis is the ...