enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differential of a function - Wikipedia

    en.wikipedia.org/wiki/Differential_of_a_function

    The differential was first introduced via an intuitive or heuristic definition by Isaac Newton and furthered by Gottfried Leibniz, who thought of the differential dy as an infinitely small (or infinitesimal) change in the value y of the function, corresponding to an infinitely small change dx in the function's argument x.

  3. Leibniz's notation - Wikipedia

    en.wikipedia.org/wiki/Leibniz's_notation

    Besides the differentials dx, dy and the integral sign ( ∫ ) already mentioned, he also introduced the colon (:) for division, the middle dot (⋅) for multiplication, the geometric signs for similar (~) and congruence (≅), the use of Recorde's equal sign (=) for proportions (replacing Oughtred's:: notation) and the double-suffix ...

  4. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    Such equations give rise to the terminology found in some texts wherein the derivative is referred to as the "differential coefficient" (i.e., the coefficient of dx). Some authors and journals set the differential symbol d in roman type instead of italic: dx. The ISO/IEC 80000 scientific style guide recommends this style.

  5. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    In mathematics, the derivative is a fundamental tool that quantifies the sensitivity to change of a function's output with respect to its input. The derivative of a function of a single variable at a chosen input value, when it exists, is the slope of the tangent line to the graph of the function at that point.

  6. Differential (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Differential_(mathematics)

    In Leibniz's notation, if x is a variable quantity, then dx denotes an infinitesimal change in the variable x. Thus, if y is a function of x, then the derivative of y with respect to x is often denoted dy/dx, which would otherwise be denoted (in the notation of Newton or Lagrange) ẏ or y ′.

  7. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    For instance, suppose that f has derivative equal to zero at each point. This means that its tangent line is horizontal at every point, so the function should also be horizontal. The mean value theorem proves that this must be true: The slope between any two points on the graph of f must equal the slope of one of the tangent lines of f. All of ...

  8. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    The differential dy is defined by = ′ (), where ′ is the derivative of f with respect to x, and dx is an additional real variable (so that dy is a function of x and dx). The notation is such that the equation =

  9. Differentiation rules - Wikipedia

    en.wikipedia.org/wiki/Differentiation_rules

    The elementary power rule generalizes considerably. The most general power rule is the functional power rule: for any functions f and g, ′ = (⁡) ′ = (′ + ′ ⁡), ...