Search results
Results from the WOW.Com Content Network
The Boyer–Moore algorithm searches for occurrences of P in T by performing explicit character comparisons at different alignments. Instead of a brute-force search of all alignments (of which there are n − m + 1 {\displaystyle n-m+1} ), Boyer–Moore uses information gained by preprocessing P to skip as many alignments as possible.
A string-searching algorithm, sometimes called string-matching algorithm, is an algorithm that searches a body of text for portions that match by pattern. A basic example of string searching is when the pattern and the searched text are arrays of elements of an alphabet ( finite set ) Σ.
In computer science, the Knuth–Morris–Pratt algorithm (or KMP algorithm) is a string-searching algorithm that searches for occurrences of a "word" W within a main "text string" S by employing the observation that when a mismatch occurs, the word itself embodies sufficient information to determine where the next match could begin, thus bypassing re-examination of previously matched characters.
The occurrences of a given pattern in a given string can be found with a string searching algorithm. Finding the longest string which is equal to a substring of two or more strings is known as the longest common substring problem. In the mathematical literature, substrings are also called subwords (in America) or factors (in Europe).
The string spelled by the edges from the root to such a node is a longest repeated substring. The problem of finding the longest substring with at least k {\displaystyle k} occurrences can be solved by first preprocessing the tree to count the number of leaf descendants for each internal node, and then finding the deepest node with at least k ...
A naive string matching algorithm compares the given pattern against all positions in the given text. Each comparison takes time proportional to the length of the pattern, and the number of positions is proportional to the length of the text. Therefore, the worst-case time for such a method is proportional to the product of the two lengths.
The following definition is standard, and found as such in most textbooks on formal language theory. [24] [25] Given a finite alphabet Σ, the following constants are defined as regular expressions: (empty set) ∅ denoting the set ∅. (empty string) ε denoting the set containing only the "empty" string, which has no characters at all.
The bag-of-words model is commonly used in methods of document classification where, for example, the (frequency of) occurrence of each word is used as a feature for training a classifier. [1] It has also been used for computer vision. [2]