enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another.

  3. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    The following apply for the nuclear reaction: a + b ↔ R → c in the centre of mass frame , where a and b are the initial species about to collide, c is the final species, and R is the resonant state .

  4. Neutron–proton ratio - Wikipedia

    en.wikipedia.org/wiki/Neutron–proton_ratio

    The neutron–proton ratio (N/Z ratio or nuclear ratio) of an atomic nucleus is the ratio of its number of neutrons to its number of protons. Among stable nuclei and naturally occurring nuclei, this ratio generally increases with increasing atomic number. [ 1 ]

  5. Bateman equation - Wikipedia

    en.wikipedia.org/wiki/Bateman_equation

    In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]

  6. Four factor formula - Wikipedia

    en.wikipedia.org/wiki/Four_factor_formula

    If k = 1, the chain reaction is critical and the neutron population will remain constant. In an infinite medium, neutrons cannot leak out of the system and the multiplication factor becomes the infinite multiplication factor, k = k ∞ {\displaystyle k=k_{\infty }} , which is approximated by the four-factor formula.

  7. Six factor formula - Wikipedia

    en.wikipedia.org/wiki/Six_factor_formula

    The multiplication factor, k, is defined as (see nuclear chain reaction): k = ⁠ number of neutrons in one generation / number of neutrons in preceding generation ⁠. If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.

  8. Q value (nuclear science) - Wikipedia

    en.wikipedia.org/wiki/Q_value_(nuclear_science)

    A reaction with a negative Q value is endothermic, i.e. requires a net energy input, since the kinetic energy of the final state is less than the kinetic energy of the initial state. [1] Observe that a chemical reaction is exothermic when it has a negative enthalpy of reaction, in contrast a positive Q value in a nuclear reaction.

  9. Neutron generator - Wikipedia

    en.wikipedia.org/wiki/Neutron_generator

    The DT reaction is used more than the DD reaction because the yield of the DT reaction is 50–100 times higher than that of the DD reaction. 2 P + 2 N = 17.7 MeV [19,34 MeV - 1,626 MeV] D + T → n + 4 He E n = 14.1 MeV D + D -> p + Positron + 3 x Gamma = 2.5 MeV high beginning energy: 11,4 MeV : D + D → p + Positron + 2 Gamma + 3 He