Search results
Results from the WOW.Com Content Network
Chlorine-releasing compounds, also known as chlorine base compounds, is jargon to describe certain chlorine-containing substances that are used as disinfectants and bleaches. They include the following chemicals: sodium hypochlorite (active agent in bleach ), chloramine , halazone , and sodium dichloroisocyanurate . [ 2 ]
In oxygenic photosynthesis, the first electron donor is water, creating oxygen (O 2) as a by-product. In anoxygenic photosynthesis, various electron donors are used. Cytochrome b 6 f and ATP synthase work together to produce ATP (photophosphorylation) in two distinct ways.
Photosystem I operates with the functions of producing NADPH, the reduced form of NADP + (Fd 2-red + NADH + 2 NADP + + H + = Fd ox + NAD + + 2 NADPH.), at the end of the photosynthetic reaction through electron transfer, and of providing energy to a proton pump and eventually ATP, for instance in cyclic electron transport.
Photosystem II is present on the thylakoid membranes inside chloroplasts, the site of photosynthesis in green plants. [9] The structure of Photosystem II is remarkably similar to the bacterial reaction center, and it is theorized that they share a common ancestor. The core of Photosystem II consists of two subunits referred to as D1 and D2 ...
The principal example is tert-butyl hypochlorite, which is a useful chlorinating agent. [3] Most hypochlorite salts are handled as aqueous solutions. Their primary applications are as bleaching, disinfection, and water treatment agents. They are also used in chemistry for chlorination and oxidation reactions.
Calvin cycle step 1 (black circles represent carbon atoms) Calvin cycle steps 2 and 3 combined. The enzyme RuBisCO catalyses the carboxylation of ribulose-1,5-bisphosphate, RuBP, a 5-carbon compound, by carbon dioxide (a total of 6 carbons) in a two-step reaction. [6] The product of the first step is enediol-enzyme complex that can capture CO 2 ...
The evolution of oxygen during the light-dependent steps in photosynthesis (Hill reaction) was proposed and proven by British biochemist Robin Hill. He demonstrated that isolated chloroplasts would make oxygen (O 2) but not fix carbon dioxide (CO 2). This is evidence that the light and dark reactions occur at different sites within the cell. [1 ...
Chlorine dioxide is sometimes used in combination with chlorine, but it is used alone in ECF (elemental-chlorine-free) bleaching sequences. It is used at moderately acidic pH (3.5 to 6). The use of chlorine dioxide minimizes the amount of organochlorine compounds produced. [8]