Search results
Results from the WOW.Com Content Network
The reciprocal function: y = 1/x. For every x except 0, y represents its multiplicative inverse. The graph forms a rectangular hyperbola. In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x −1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a ...
Once we have defined multiplication for formal power series, we can define multiplicative inverses as follows. The multiplicative inverse of a formal power series A is a formal power series C such that AC = 1, provided that such a formal power series exists. It turns out that if A has a multiplicative inverse, it is unique, and we denote it by ...
A modular multiplicative inverse of a modulo m can be found by using the extended Euclidean algorithm. The Euclidean algorithm determines the greatest common divisor (gcd) of two integers, say a and m. If a has a multiplicative inverse modulo m, this gcd must be 1. The last of several equations produced by the algorithm may be solved for this gcd.
The multiplicative inverse x ≡ a −1 (mod m) may be efficiently computed by solving Bézout's equation a x + m y = 1 for x, y, by using the Extended Euclidean algorithm. In particular, if p is a prime number, then a is coprime with p for every a such that 0 < a < p; thus a multiplicative inverse exists for all a that is not congruent to zero ...
The number r is maximal in the following sense: there always exists a complex number x with | x − c | = r such that no analytic continuation of the series can be defined at x. The power series expansion of the inverse function of an analytic function can be determined using the Lagrange inversion theorem.
A function :, with domain X and codomain Y, is bijective, if for every y in Y, there is one and only one element x in X such that y = f(x). In this case, the inverse function of f is the function : that maps to the element such that y = f(x).
Moreover, there can be no other power series with this property. The left-hand side therefore designates the multiplicative inverse of 1 − x in the ring of power series. Expressions for the ordinary generating function of other sequences are easily derived from this one.
The Möbius function () is a multiplicative function in number theory introduced by the German mathematician August Ferdinand Möbius (also transliterated Moebius) in 1832. [ i ] [ ii ] [ 2 ] It is ubiquitous in elementary and analytic number theory and most often appears as part of its namesake the Möbius inversion formula .