Search results
Results from the WOW.Com Content Network
- Anyone who wants a brief introduction to Python and the key components of its data science stack, and - Python programmers who want a quick refresher on using Python for data analysis. We do not expect any of our readers to have a formal background in computer science, although some familiarity with programming would be nice to have.
Financial modeling is the task of building an abstract representation (a model) of a real world financial situation. [1] This is a mathematical model designed to represent (a simplified version of) the performance of a financial asset or portfolio of a business, project , or any other investment.
The model can be solved as an investment model (single or multi-period, myopic, or full foresight) or as a rolling production cost unit commitment model to simulate operations. [ 114 ] Backbone's own wiki page has a tutorial for new users, example models, and user created mods.
Financial risk modeling is the use of formal mathematical and econometric techniques to measure, monitor and control the market risk, credit risk, and operational risk on a firm's balance sheet, on a bank's accounting ledger of tradeable financial assets, or of a fund manager's portfolio value; see Financial risk management. Risk modeling is ...
In order to determine the next event in a stochastic simulation, the rates of all possible changes to the state of the model are computed, and then ordered in an array. Next, the cumulative sum of the array is taken, and the final cell contains the number R, where R is the total event rate.
Monte Carlo methods are used in corporate finance and mathematical finance to value and analyze (complex) instruments, portfolios and investments by simulating the various sources of uncertainty affecting their value, and then determining the distribution of their value over the range of resultant outcomes.
In mathematical finance, a Monte Carlo option model uses Monte Carlo methods [Notes 1] to calculate the value of an option with multiple sources of uncertainty or with complicated features. [1] The first application to option pricing was by Phelim Boyle in 1977 (for European options ).
OpenML: [493] Web platform with Python, R, Java, and other APIs for downloading hundreds of machine learning datasets, evaluating algorithms on datasets, and benchmarking algorithm performance against dozens of other algorithms. PMLB: [494] A large, curated repository of benchmark datasets for evaluating supervised machine learning algorithms ...