Search results
Results from the WOW.Com Content Network
Whereas statistics and data analysis procedures generally yield their output in numeric or tabular form, graphical techniques allow such results to be displayed in some sort of pictorial form. They include plots such as scatter plots, histograms, probability plots, spaghetti plots, residual plots, box plots, block plots and biplots. [1]
A scatter plot, also called a scatterplot, scatter graph, scatter chart, scattergram, or scatter diagram, [2] is a type of plot or mathematical diagram using Cartesian coordinates to display values for typically two variables for a set of data. If the points are coded (color/shape/size), one additional variable can be displayed.
Scagnostics (scatterplot diagnostics) is a series of measures that characterize certain properties of a point cloud in a scatter plot. The term and idea was coined by John Tukey and Paul Tukey, though they didn't publish it; later it was elaborated by Wilkinson, Anand, and Grossman. The following nine dimensions are considered: [1] [2]
The most fundamental data analysis approaches are visualization (histograms, scatter plots, surface plots, tree maps, parallel coordinate plots, etc.), statistics (hypothesis test, regression, PCA, etc.), data mining (association mining, etc.), and machine learning methods (clustering, classification, decision trees, etc.). Among these ...
Scatterplot : A scatter graph or scatter plot is a type of display using variables for a set of data. The data is displayed as a collection of points, each having the value of one variable determining the position on the horizontal axis and the value of the other variable determining the position on the vertical axis.
Tukey defined data analysis in 1961 as: "Procedures for analyzing data, techniques for interpreting the results of such procedures, ways of planning the gathering of data to make its analysis easier, more precise or more accurate, and all the machinery and results of (mathematical) statistics which apply to analyzing data." [3]
This line attempts to display the non-random component of the association between the variables in a 2D scatter plot. Smoothing attempts to separate the non-random behaviour in the data from the random fluctuations, removing or reducing these fluctuations, and allows prediction of the response based value of the explanatory variable .
The plots on top are actually annotations that contain images generated earlier. Image annotations can be used to include material that enhances a visualization such as auxiliary plots, images of experimental data, project logos, etc. Scatter plot: VisIt's Scatter plot allows visualizing multivariate data of up to four dimensions. The Scatter ...