Search results
Results from the WOW.Com Content Network
In mathematics, the floor function is the function that takes as input a real number x, and gives as output the greatest integer less than or equal to x, denoted ⌊x⌋ or floor(x). Similarly, the ceiling function maps x to the least integer greater than or equal to x, denoted ⌈x⌉ or ceil(x). [1]
A perfect totient number is an integer that is equal to the sum of its iterated totients. That is, we apply the totient function to a number n, apply it again to the resulting totient, and so on, until the number 1 is reached, and add together the resulting sequence of numbers; if the sum equals n, then n is a perfect totient number.
x erf x 1 − erf x; 0: 0: 1: 0.02: 0.022 564 575: 0.977 435 425: 0.04: 0.045 111 106: 0.954 888 894: 0.06: 0.067 621 594: 0.932 378 406: 0.08: 0.090 078 126: 0.909 ...
Any non-linear differentiable function, (,), of two variables, and , can be expanded as + +. If we take the variance on both sides and use the formula [11] for the variance of a linear combination of variables (+) = + + (,), then we obtain | | + | | +, where is the standard deviation of the function , is the standard deviation of , is the standard deviation of and = is the ...
Condition numbers can also be defined for nonlinear functions, and can be computed using calculus.The condition number varies with the point; in some cases one can use the maximum (or supremum) condition number over the domain of the function or domain of the question as an overall condition number, while in other cases the condition number at a particular point is of more interest.
In arithmetic and algebra, the seventh power of a number n is the result of multiplying seven instances of n together. So: n 7 = n × n × n × n × n × n × n. Seventh powers are also formed by multiplying a number by its sixth power, the square of a number by its fifth power, or the cube of a number by its fourth power.
The binary number system expresses any number as a sum of powers of 2, and denotes it as a sequence of 0 and 1, separated by a binary point, where 1 indicates a power of 2 that appears in the sum; the exponent is determined by the place of this 1: the nonnegative exponents are the rank of the 1 on the left of the point (starting from 0), and ...
Yao's method collects in u first those x i that appear to the highest power ; in the next round those with power are collected in u as well etc. The variable y is multiplied h − 1 {\displaystyle h-1} times with the initial u , h − 2 {\displaystyle h-2} times with the next highest powers, and so on.