enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hadamard transform - Wikipedia

    en.wikipedia.org/wiki/Hadamard_transform

    The Hadamard transform H m is a 2 m × 2 m matrix, the Hadamard matrix (scaled by a normalization factor), that transforms 2 m real numbers x n into 2 m real numbers X k.The Hadamard transform can be defined in two ways: recursively, or by using the binary (base-2) representation of the indices n and k.

  3. Hadamard factorization theorem - Wikipedia

    en.wikipedia.org/wiki/Hadamard_factorization_theorem

    Define the Hadamard canonical factors ():= = / Entire functions of finite order have Hadamard's canonical representation: [1] = = (/) where are those roots of that are not zero (), is the order of the zero of at = (the case = being taken to mean ()), a polynomial (whose degree we shall call ), and is the smallest non-negative integer such that the series = | | + converges.

  4. Fast Walsh–Hadamard transform - Wikipedia

    en.wikipedia.org/wiki/Fast_Walsh–Hadamard...

    In computational mathematics, the Hadamard ordered fast Walsh–Hadamard transform (FWHT h) is an efficient algorithm to compute the Walsh–Hadamard transform (WHT). A naive implementation of the WHT of order n = 2 m {\displaystyle n=2^{m}} would have a computational complexity of O( n 2 {\displaystyle n^{2}} ) .

  5. Hadamard matrix - Wikipedia

    en.wikipedia.org/wiki/Hadamard_matrix

    Let H be a Hadamard matrix of order n.The transpose of H is closely related to its inverse.In fact: = where I n is the n × n identity matrix and H T is the transpose of H.To see that this is true, notice that the rows of H are all orthogonal vectors over the field of real numbers and each have length .

  6. Simon's problem - Wikipedia

    en.wikipedia.org/wiki/Simon's_problem

    Simon's problem considers access to a function : {,} {,}, as implemented by a black box or an oracle. This function is promised to be either a one-to-one function, or a two-to-one function; if is two-to-one, it is furthermore promised that two inputs and ′ evaluate to the same value if and only if and ′ differ in a fixed set of bits. I.e.,

  7. Walsh function - Wikipedia

    en.wikipedia.org/wiki/Walsh_function

    Walsh functions, the Walsh system, the Walsh series, [3] and the fast Walsh–Hadamard transform are all named after the American mathematician Joseph L. Walsh. They find various applications in physics and engineering when analyzing digital signals.

  8. Models of DNA evolution - Wikipedia

    en.wikipedia.org/wiki/Models_of_DNA_evolution

    The Hadamard transform can also be combined with a wide variety of methods to accommodate among-sites rate heterogeneity, [11] using continuous distributions rather than the discrete approximations typically used in maximum likelihood phylogenetics [12] (although one must sacrifice the invertibility of the Hadamard transform to use certain ...

  9. Hadamard's maximal determinant problem - Wikipedia

    en.wikipedia.org/wiki/Hadamard's_maximal...

    Hadamard's maximal determinant problem, named after Jacques Hadamard, asks for the largest determinant of a matrix with elements equal to 1 or −1. The analogous question for matrices with elements equal to 0 or 1 is equivalent since, as will be shown below, the maximal determinant of a {1,−1} matrix of size n is 2 n−1 times the maximal determinant of a {0,1} matrix of size n−1.