Search results
Results from the WOW.Com Content Network
Light waves change phase by 180° when they reflect from the surface of a medium with higher refractive index than that of the medium in which they are travelling. [1] A light wave travelling in air that is reflected by a glass barrier will undergo a 180° phase change, while light travelling in glass will not undergo a phase change if it is reflected by a boundary with air.
In 1957 a modified area rule was available for raising the subsonic cruise speed of transport aircraft by 50 mph. [12] The cruise speed is limited by the sudden increase in drag which indicates the presence of local supersonic flow on top of the wing. Whitcomb's modified rule reduced the supersonic speed before the shock, which weakened it and ...
Reflection of light is either specular (mirror-like) or diffuse (retaining the energy, but losing the image) depending on the nature of the interface.In specular reflection the phase of the reflected waves depends on the choice of the origin of coordinates, but the relative phase between s and p (TE and TM) polarizations is fixed by the properties of the media and of the interface between them.
Finally, aerodynamic problems may also be classified by the flow environment. External aerodynamics is the study of flow around solid objects of various shapes (e.g. around an airplane wing), while internal aerodynamics is the study of flow through passages inside solid objects (e.g. through a jet engine).
In these transonic speed ranges, compressibility causes a change in the density of the air around an airplane. During flight, a wing produces lift by accelerating the airflow over the upper surface. This accelerated air can, and does, reach supersonic speeds, even though the airplane itself may be flying at a subsonic airspeed ( Mach number < 1.0).
For an incident wave traveling from one medium (where the wave speed is c 1) to another medium (where the wave speed is c 2), one part of the wave will transmit into the second medium, while another part reflects back into the other direction and stays in the first medium. The amplitude of the transmitted wave and the reflected wave can be ...
Snell's law (also known as the Snell–Descartes law, the ibn-Sahl law, [1] and the law of refraction) is a formula used to describe the relationship between the angles of incidence and refraction, when referring to light or other waves passing through a boundary between two different isotropic media, such as water, glass, or air.
The speed at which light propagates through transparent materials, such as glass or air, is less than c; similarly, the speed of electromagnetic waves in wire cables is slower than c. The ratio between c and the speed v at which light travels in a material is called the refractive index n of the material (n = c / v ).