enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Zero of a function - Wikipedia

    en.wikipedia.org/wiki/Zero_of_a_function

    A root of a polynomial is a zero of the corresponding polynomial function. [1] The fundamental theorem of algebra shows that any non-zero polynomial has a number of roots at most equal to its degree , and that the number of roots and the degree are equal when one considers the complex roots (or more generally, the roots in an algebraically ...

  3. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Rather, the degree of the zero polynomial is either left explicitly undefined, or defined as negative (either −1 or −∞). [10] The zero polynomial is also unique in that it is the only polynomial in one indeterminate that has an infinite number of roots. The graph of the zero polynomial, f(x) = 0, is the x-axis.

  4. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    The degree of the zero polynomial is either left undefined, or is defined to be negative (usually −1 or ). [7] Like any constant value, the value 0 can be considered as a (constant) polynomial, called the zero polynomial. It has no nonzero terms, and so, strictly speaking, it has no degree either.

  5. Polynomial ring - Wikipedia

    en.wikipedia.org/wiki/Polynomial_ring

    A constant polynomial is either the zero polynomial, or a polynomial of degree zero. A nonzero polynomial is monic if its leading coefficient is 1. {\displaystyle 1.} Given two polynomials p and q , if the degree of the zero polynomial is defined to be − ∞ , {\displaystyle -\infty ,} one has

  6. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    For example, a polynomial of degree n has a pole of degree n at infinity. The complex plane extended by a point at infinity is called the Riemann sphere. If f is a function that is meromorphic on the whole Riemann sphere, then it has a finite number of zeros and poles, and the sum of the orders of its poles equals the sum of the orders of its ...

  7. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    Root-finding of polynomials – Algorithms for finding zeros of polynomials; Square-free polynomialPolynomial with no repeated root; Vieta's formulas – Relating coefficients and roots of a polynomial; Cohn's theorem relating the roots of a self-inversive polynomial with the roots of the reciprocal polynomial of its derivative.

  8. Quintic function - Wikipedia

    en.wikipedia.org/wiki/Quintic_function

    Finding the roots (zeros) of a given polynomial has been a prominent mathematical problem.. Solving linear, quadratic, cubic and quartic equations in terms of radicals and elementary arithmetic operations on the coefficients can always be done, no matter whether the roots are rational or irrational, real or complex; there are formulas that yield the required solutions.

  9. Algebraic variety - Wikipedia

    en.wikipedia.org/wiki/Algebraic_variety

    A plane projective curve is the zero locus of an irreducible homogeneous polynomial in three indeterminates. The projective line P 1 is an example of a projective curve; it can be viewed as the curve in the projective plane P 2 = {[ x , y , z ] } defined by x = 0 .