Search results
Results from the WOW.Com Content Network
The methods used for solving two dimensional Diffusion problems are similar to those used for one dimensional problems. The general equation for steady diffusion can be easily derived from the general transport equation for property Φ by deleting transient and convective terms [1]
A nonlinear hyperbolic conservation law is defined through a flux function : + (()) =. In the case of () =, we end up with a scalar linear problem.Note that in general, is a vector with equations in it.
Discretized equation must be set up at each of the nodal points in order to solve the problem. The resulting system of linear algebraic equations Linear equation can then be solved to obtain at the nodal points. The matrix of higher order can be solved in MATLAB. This method can also be applied to a 2D situation.
The unsteady convection–diffusion problem is considered, at first the known temperature T is expanded into a Taylor series with respect to time taking into account its three components. Next, using the convection diffusion equation an equation is obtained from the differentiation of this equation.
The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.
Now we let this pulse propagate through a fibre with >, it will be affected by group velocity dispersion. For this sign of D, the dispersion is anomalous, so that the higher frequency components will propagate a little bit faster than the lower frequencies, thus arriving before at the end of the fiber. The overall signal we get is a wider ...
In physics, the phase problem is the problem of loss of information concerning the phase that can occur when making a physical measurement. The name comes from the field of X-ray crystallography , where the phase problem has to be solved for the determination of a structure from diffraction data. [ 1 ]
The dispersion relations show conics of the free-electron energy dispersion parabolas for all possible reciprocal lattice vectors. This results in a very complicated set intersecting of curves when the dispersion relations are calculated because there is a large number of possible angles between evaluation trajectories, first and higher order ...