enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Finite volume method for two dimensional diffusion problem

    en.wikipedia.org/wiki/Finite_volume_method_for...

    The methods used for solving two dimensional Diffusion problems are similar to those used for one dimensional problems. The general equation for steady diffusion can be easily derived from the general transport equation for property Φ by deleting transient and convective terms [1]

  3. Lax–Friedrichs method - Wikipedia

    en.wikipedia.org/wiki/Lax–Friedrichs_method

    A nonlinear hyperbolic conservation law is defined through a flux function : + (()) =. In the case of () =, we end up with a scalar linear problem.Note that in general, is a vector with equations in it.

  4. Finite volume method for one-dimensional steady state diffusion

    en.wikipedia.org/wiki/Finite_volume_method_for...

    Discretized equation must be set up at each of the nodal points in order to solve the problem. The resulting system of linear algebraic equations Linear equation can then be solved to obtain at the nodal points. The matrix of higher order can be solved in MATLAB. This method can also be applied to a 2D situation.

  5. Numerical solution of the convection–diffusion equation

    en.wikipedia.org/wiki/Numerical_solution_of_the...

    The unsteady convection–diffusion problem is considered, at first the known temperature T is expanded into a Taylor series with respect to time taking into account its three components. Next, using the convection diffusion equation an equation is obtained from the differentiation of this equation.

  6. Crank–Nicolson method - Wikipedia

    en.wikipedia.org/wiki/Crank–Nicolson_method

    The Crank–Nicolson stencil for a 1D problem. The Crank–Nicolson method is based on the trapezoidal rule, giving second-order convergence in time.For linear equations, the trapezoidal rule is equivalent to the implicit midpoint method [citation needed] —the simplest example of a Gauss–Legendre implicit Runge–Kutta method—which also has the property of being a geometric integrator.

  7. Soliton (optics) - Wikipedia

    en.wikipedia.org/wiki/Soliton_(optics)

    Now we let this pulse propagate through a fibre with >, it will be affected by group velocity dispersion. For this sign of D, the dispersion is anomalous, so that the higher frequency components will propagate a little bit faster than the lower frequencies, thus arriving before at the end of the fiber. The overall signal we get is a wider ...

  8. Phase problem - Wikipedia

    en.wikipedia.org/wiki/Phase_problem

    In physics, the phase problem is the problem of loss of information concerning the phase that can occur when making a physical measurement. The name comes from the field of X-ray crystallography , where the phase problem has to be solved for the determination of a structure from diffraction data. [ 1 ]

  9. Empty lattice approximation - Wikipedia

    en.wikipedia.org/wiki/Empty_lattice_approximation

    The dispersion relations show conics of the free-electron energy dispersion parabolas for all possible reciprocal lattice vectors. This results in a very complicated set intersecting of curves when the dispersion relations are calculated because there is a large number of possible angles between evaluation trajectories, first and higher order ...