enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Connectivity (graph theory) - Wikipedia

    en.wikipedia.org/wiki/Connectivity_(graph_theory)

    A graph is called k-vertex-connected or k-connected if its vertex connectivity is k or greater. More precisely, any graph G (complete or not) is said to be k -vertex-connected if it contains at least k + 1 vertices, but does not contain a set of k − 1 vertices whose removal disconnects the graph; and κ ( G ) is defined as the largest k such ...

  3. Strongly connected component - Wikipedia

    en.wikipedia.org/wiki/Strongly_connected_component

    The two queries partition the vertex set into 4 subsets: vertices reached by both, either one, or none of the searches. One can show that a strongly connected component has to be contained in one of the subsets. The vertex subset reached by both searches forms a strongly connected component, and the algorithm then recurses on the other 3 subsets.

  4. Adjacency matrix - Wikipedia

    en.wikipedia.org/wiki/Adjacency_matrix

    For a simple graph with vertex set U = {u 1, …, u n}, the adjacency matrix is a square n × n matrix A such that its element A ij is 1 when there is an edge from vertex u i to vertex u j, and 0 when there is no edge. [1] The diagonal elements of the matrix are all 0, since edges from a vertex to itself are not

  5. Algebraic connectivity - Wikipedia

    en.wikipedia.org/wiki/Algebraic_connectivity

    An example graph, with 6 vertices, diameter 3, connectivity 1, and algebraic connectivity 0.722 The algebraic connectivity (also known as Fiedler value or Fiedler eigenvalue after Miroslav Fiedler) of a graph G is the second-smallest eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix of G. [1]

  6. k-vertex-connected graph - Wikipedia

    en.wikipedia.org/wiki/K-vertex-connected_graph

    The vertex-connectivity of an input graph G can be computed in polynomial time in the following way [4] consider all possible pairs (,) of nonadjacent nodes to disconnect, using Menger's theorem to justify that the minimal-size separator for (,) is the number of pairwise vertex-independent paths between them, encode the input by doubling each vertex as an edge to reduce to a computation of the ...

  7. Menger's theorem - Wikipedia

    en.wikipedia.org/wiki/Menger's_theorem

    The vertex-connectivity statement of Menger's theorem is as follows: . Let G be a finite undirected graph and x and y two nonadjacent vertices. Then the size of the minimum vertex cut for x and y (the minimum number of vertices, distinct from x and y, whose removal disconnects x and y) is equal to the maximum number of pairwise internally disjoint paths from x to y.

  8. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    A vertex with a large degree also called a heavy node, results in a large diagonal entry in the Laplacian matrix dominating the matrix properties. Normalization is aimed to make the influence of such vertices more equal to that of other vertices, by dividing the entries of the Laplacian matrix by the vertex degrees.

  9. Hypergraph - Wikipedia

    en.wikipedia.org/wiki/Hypergraph

    In the case of a graph, the adjacency matrix is a square matrix which indicates whether pairs of vertices are adjacent. Likewise, we can define the adjacency matrix A = ( a i j ) {\displaystyle A=(a_{ij})} for a hypergraph in general where the hyperedges e k ≤ m {\displaystyle e_{k\leq m}} have real weights w e k ∈ R {\displaystyle w_{e_{k ...