Search results
Results from the WOW.Com Content Network
At equilibrium, the center of mass and the contact point are on the line perpendicular to the ground. When the toy is pushed, its center of mass rises and shifts away from that line. This produces a righting moment, which returns the toy to its equilibrium position. The above examples of mono-monostatic objects are inhomogeneous.
In 1977 Ryogo Kubo was awarded the Boltzmann Medal for his contributions to the theory of non-equilibrium statistical mechanics, and to the theory of fluctuation phenomena. He is cited particularly for his work in the establishment of the basic relations between transport coefficients and equilibrium time correlation functions: relations with ...
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details
The Euler three-body problem is known by a variety of names, such as the problem of two fixed centers, the Euler–Jacobi problem, and the two-center Kepler problem. The exact solution, in the full three dimensional case, can be expressed in terms of Weierstrass's elliptic functions [2] For convenience, the problem may also be solved by ...
where x(t) ∈ R n and A is an n×n matrix with real entries, has a constant solution = (In a different language, the origin 0 ∈ R n is an equilibrium point of the corresponding dynamical system.) This solution is asymptotically stable as t → ∞ ("in the future") if and only if for all eigenvalues λ of A, Re(λ) < 0.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
This is an energy balance which defines the position of the moving interface. Note that this evolving boundary is an unknown (hyper-)surface; hence, Stefan problems are examples of free boundary problems. Analogous problems occur, for example, in the study of porous media flow, mathematical finance and crystal growth from monomer solutions. [1]
Discover the latest breaking news in the U.S. and around the world — politics, weather, entertainment, lifestyle, finance, sports and much more.