enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Anaerobic glycolysis - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_glycolysis

    Fates of pyruvate under anaerobic conditions: Pyruvate is the terminal electron acceptor in lactic acid fermentation. When sufficient oxygen is not present in the muscle cells for further oxidation of pyruvate and NADH produced in glycolysis, NAD+ is regenerated from NADH by reduction of pyruvate to lactate. [4] Lactate is converted to pyruvate ...

  3. Glycolysis - Wikipedia

    en.wikipedia.org/wiki/Glycolysis

    The liver in mammals gets rid of this excess lactate by transforming it back into pyruvate under aerobic conditions; see Cori cycle. Fermentation of pyruvate to lactate is sometimes also called "anaerobic glycolysis", however, glycolysis ends with the production of pyruvate regardless of the presence or absence of oxygen.

  4. Cori cycle - Wikipedia

    en.wikipedia.org/wiki/Cori_cycle

    Cori cycle. The Cori cycle (also known as the lactic acid cycle), named after its discoverers, Carl Ferdinand Cori and Gerty Cori, [1] is a metabolic pathway in which lactate, produced by anaerobic glycolysis in muscles, is transported to the liver and converted to glucose, which then returns to the muscles and is cyclically metabolized back to lactate.

  5. Obligate anaerobe - Wikipedia

    en.wikipedia.org/wiki/Obligate_anaerobe

    Obligate anaerobes convert nutrients into energy through anaerobic respiration or fermentation. In aerobic respiration, the pyruvate generated from glycolysis is converted to acetyl-CoA. This is then broken down via the TCA cycle and electron transport chain.

  6. Mitochondrial matrix - Wikipedia

    en.wikipedia.org/wiki/Mitochondrial_matrix

    The oxidation of pyruvate by pyruvate dehydrogenase in the matrix produces CO 2, acetyl-CoA, and NADH. Beta oxidation of fatty acids serves as an alternate catabolic pathway that produces acetyl-CoA, NADH, and FADH 2. [1] The production of acetyl-CoA begins the citric acid cycle while the co-enzymes produced are used in the electron transport ...

  7. Cellular respiration - Wikipedia

    en.wikipedia.org/wiki/Cellular_respiration

    Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor, such as oxygen, to produce large amounts of energy and drive the bulk production of ATP. Anaerobic respiration is used by microorganisms, either bacteria or archaea, in which neither oxygen (aerobic respiration) nor ...

  8. Anaerobic respiration - Wikipedia

    en.wikipedia.org/wiki/Anaerobic_respiration

    Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.

  9. Pasteur effect - Wikipedia

    en.wikipedia.org/wiki/Pasteur_effect

    When the O 2 concentration is low, the two pyruvate molecules formed through glycolysis are each fermented into ethanol and carbon dioxide. While only 2 ATP are produced per glucose, this method is utilized under anaerobic conditions because it oxidizes the electron shuttle NADH into NAD + for another round of glycolysis and ethanol fermentation.