enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions ...

  3. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

  4. Arctangent series - Wikipedia

    en.wikipedia.org/wiki/Arctangent_series

    Each term of this modified series is a rational function with its poles at = in the complex plane, the same place where the arctangent function has its poles. By contrast, a polynomial such as the Taylor series for arctangent forces all of its poles to infinity.

  5. Mathematical analysis - Wikipedia

    en.wikipedia.org/wiki/Mathematical_analysis

    Alongside his development of Taylor series of trigonometric functions, ... Course Notes" (PDF). Archived (PDF) from the original on 2007-04-19.

  6. Non-analytic smooth function - Wikipedia

    en.wikipedia.org/wiki/Non-analytic_smooth_function

    so that the radius of convergence of the Taylor series of > at is 0 by the Cauchy-Hadamard formula. Since the set of analyticity of a function is an open set, and since dyadic rationals are dense , we conclude that F > q {\displaystyle F_{>q}} , and hence F {\displaystyle F} , is nowhere analytic in R {\displaystyle \mathbb {R} } .

  7. Series expansion - Wikipedia

    en.wikipedia.org/wiki/Series_expansion

    A Laurent series is a generalization of the Taylor series, allowing terms with negative exponents; it takes the form = and converges in an annulus. [6] In particular, a Laurent series can be used to examine the behavior of a complex function near a singularity by considering the series expansion on an annulus centered at the singularity.

  8. Itô's lemma - Wikipedia

    en.wikipedia.org/wiki/Itô's_lemma

    We derive Itô's lemma by expanding a Taylor series and applying the rules of stochastic calculus. Suppose X t {\displaystyle X_{t}} is an Itô drift-diffusion process that satisfies the stochastic differential equation

  9. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    The Taylor series of f converges uniformly to the zero function T f (x) = 0, which is analytic with all coefficients equal to zero. The function f is unequal to this Taylor series, and hence non-analytic. For any order k ∈ N and radius r > 0 there exists M k,r > 0 satisfying the remainder bound above.