Search results
Results from the WOW.Com Content Network
In mathematics, some functions or groups of functions are important enough to deserve their own names. This is a listing of articles which explain some of these functions in more detail. There is a large theory of special functions which developed out of statistics and mathematical physics.
In mathematics, a family, or indexed family, is informally a collection of objects, each associated with an index from some index set.For example, a family of real numbers, indexed by the set of integers, is a collection of real numbers, where a given function selects one real number for each integer (possibly the same) as indexing.
Holomorphic function: complex-valued function of a complex variable which is differentiable at every point in its domain. Meromorphic function: complex-valued function that is holomorphic everywhere, apart from at isolated points where there are poles. Entire function: A holomorphic function whose domain is the entire complex plane.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
In mathematics, a function from a set X to a set Y assigns to each element of X exactly one element of Y. [1] The set X is called the domain of the function [2] and the set Y is called the codomain of the function. [3] Functions were originally the idealization of how a varying quantity depends on another quantity.
Additionally, a family of sets may be defined as a function from a set , known as the index set, to , in which case the sets of the family are indexed by members of . [1] In some contexts, a family of sets may be allowed to contain repeated copies of any given member, [ 2 ] [ 3 ] [ 4 ] and in other contexts it may form a proper class .
In mathematics, with special application to complex analysis, a normal family is a pre-compact subset of the space of continuous functions. Informally, this means that the functions in the family are not widely spread out, but rather stick together in a somewhat "clustered" manner. Note that a compact family of continuous functions is ...
In mathematics and its applications, a parametric family or a parameterized family is a family of objects (a set of related objects) whose differences depend only on the chosen values for a set of parameters. [1] Common examples are parametrized (families of) functions, probability distributions, curves, shapes, etc. [citation needed]