Search results
Results from the WOW.Com Content Network
If a first body of mass m A is placed at a distance r (center of mass to center of mass) from a second body of mass m B, each body is subject to an attractive force F g = Gm A m B /r 2, where G = 6.67 × 10 −11 N⋅kg −2 ⋅m 2 is the "universal gravitational constant". This is sometimes referred to as gravitational mass.
For example, in retail commerce, the "net weight" of products actually refers to mass, and is expressed in mass units such as grams or ounces (see also Pound: Use in commerce). Conversely, the load index rating on automobile tires, which specifies the maximum structural load for a tire in kilograms, refers to weight; that is, the force due to ...
Alternately, the atomic mass of a carbon-12 atom may be expressed in any other mass units: for example, the atomic mass of a carbon-12 atom is 1.992 646 882 70 (62) × 10 −26 kg. As is the case for the related atomic mass when expressed in daltons , the relative isotopic mass numbers of nuclides other than carbon-12 are not whole numbers, but ...
For example, the atomic mass constant is exactly known when expressed using the dalton (its value is exactly 1 Da), but the kilogram is not exactly known when using these units, the opposite of when expressing the same quantities using the kilogram.
For other isotopes, the isotopic mass is usually within 0.1 u of the mass number. For example, 35 Cl (17 protons and 18 neutrons) has a mass number of 35 and an isotopic mass of 34.96885. [7] The difference of the actual isotopic mass minus the mass number of an atom is known as the mass excess, [8] which for 35 Cl is –0.03115.
For example, the sum of the mass of the three quarks in a nucleon is approximately 12.5 MeV/c 2, which is low compared to the mass of a nucleon (approximately 938 MeV/c 2). [27] [28] The bottom line is that most of the mass of everyday objects comes from the interaction energy of its elementary components.
The exact mass of an isotopic species (more appropriately, the calculated exact mass [9]) is obtained by summing the masses of the individual isotopes of the molecule. For example, the exact mass of water containing two hydrogen-1 (1 H) and one oxygen-16 (16 O) is 1.0078 + 1.0078 + 15.9949 = 18.0105 Da.
The conservation of mass was obscure for millennia because of the buoyancy effect of the Earth's atmosphere on the weight of gases. For example, a piece of wood weighs less after burning; [17] this seemed to suggest that some of its mass disappears, or is transformed or lost. Careful experiments were performed in which chemical reactions such ...