Search results
Results from the WOW.Com Content Network
Diagram of a newly formed planet in a state of hydrostatic equilibrium. In fluid mechanics, hydrostatic equilibrium (hydrostatic balance, hydrostasy) is the condition of a fluid or plastic solid at rest, which occurs when external forces, such as gravity, are balanced by a pressure-gradient force. [1]
Archimedes' principle (also spelled Archimedes's principle) states that the upward buoyant force that is exerted on a body immersed in a fluid, whether fully or partially, is equal to the weight of the fluid that the body displaces. [1] Archimedes' principle is a law of physics fundamental to fluid mechanics. It was formulated by Archimedes of ...
This vertical force is termed buoyancy or buoyant force and is equal in magnitude, but opposite in direction, to the weight of the displaced fluid. Mathematically, = where ρ is the density of the fluid, g is the acceleration due to gravity, and V is the volume of fluid directly above the curved surface. [8]
Heath called it "a veritable tour de force which must be read in full to be appreciated." [5] The book contains a detailed investigation of the stable equilibrium positions of floating right paraboloids of various shapes and relative densities when floating in a fluid of greater specific gravity, according to geometric and hydrostatic ...
In fluid mechanics, the pressure-gradient force is the force that results when there is a difference in pressure across a surface. In general, a pressure is a force per unit area across a surface. A difference in pressure across a surface then implies a difference in force, which can result in an acceleration according to Newton's second law of ...
Gravity tends to make the particles settle, whereas diffusion acts to homogenize them, driving them into regions of smaller concentration. Under the action of gravity, a particle acquires a downward speed of v = μmg, where m is the mass of the particle, g is the acceleration due to gravity, and μ is the particle's mobility in the fluid.
When a pendulum is not swinging all the forces acting on it are in equilibrium. The force due to gravity and the mass of the object at the end of the pendulum is equal to the tension in the string holding the object up. When a pendulum is put in motion, the place of equilibrium is at the bottom of the swing, the location where the pendulum rests.
There are 2 body forces acting on the channel fluid, namely, gravity and friction: =, +, where f x,g is the body force due to gravity and f x,f is the body force due to friction. f x , g can be calculated using basic physics and trigonometry: [ 27 ] F g = sin ( θ ) g M {\displaystyle F_{g}=\sin(\theta )gM} where F g is the force of gravity ...