Search results
Results from the WOW.Com Content Network
Consequently, the object is in a state of static mechanical equilibrium. In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. [1]: 39 By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is zero. [1]: 45–46 [2]
The static equilibrium of a particle is an important concept in statics. A particle is in equilibrium only if the resultant of all forces acting on the particle is equal to zero. In a rectangular coordinate system the equilibrium equations can be represented by three scalar equations, where the sums of forces in all three directions are equal ...
The word equilibrium implies a state of balance. Equilibrium thermodynamics, in origins, derives from analysis of the Carnot cycle. Here, typically a system, as cylinder of gas, initially in its own state of internal thermodynamic equilibrium, is set out of balance via heat input from a combustion reaction. Then, through a series of steps, as ...
A quasi-static thermodynamic process can be visualized by graphically plotting the path of idealized changes to the system's state variables. In the example, a cycle consisting of four quasi-static processes is shown. Each process has a well-defined start and end point in the pressure-volume state space.
Mechanical equilibrium: If at every point within a given system there is no change in pressure with time, and there is no movement of material, the system is in mechanical equilibrium. Phase equilibrium : This occurs when the mass for each individual phase reaches a value that does not change with time.
where T is temperature, S is entropy, P is pressure, μ is the chemical potential, N is the number of particles in the gas, and the volume has been written as V=Ax. Since the system is closed, the particle number N is constant and a small change in the energy of the system would be given by: = +
In statistical mechanics, Maxwell–Boltzmann statistics describes the distribution of classical material particles over various energy states in thermal equilibrium. It is applicable when the temperature is high enough or the particle density is low enough to render quantum effects negligible.
We combine the above with Newton's second law, which states that the force experienced by a particle is related to the time rate of change of its momentum, such that = = =. Now consider a large number, N {\displaystyle N} , of gas particles with random orientation in a three-dimensional volume.