Search results
Results from the WOW.Com Content Network
Heteroarenes are aromatic compounds, where at least one methine or vinylene (-C= or -CH=CH-) group is replaced by a heteroatom: oxygen, nitrogen, or sulfur. [3] Examples of non-benzene compounds with aromatic properties are furan, a heterocyclic compound with a five-membered ring that includes a single oxygen atom, and pyridine, a heterocyclic compound with a six-membered ring containing one ...
Many simple aromatic rings have trivial names. They are usually found as substructures of more complex molecules ("substituted aromatics"). Typical simple aromatic compounds are benzene, indole, and pyridine. [1] [2] Simple aromatic rings can be heterocyclic if they contain non-carbon ring atoms, for example, oxygen, nitrogen, or sulfur. They ...
Simple aromatic rings are aromatic organic compounds (also known as arenes or aromatics) that consist only of conjugated planar ring systems with delocalized pi electron clouds instead of discrete alternating single and double bonds. Typical simple aromatic compounds are benzene and indole.
Aromatic compounds, also known as arenes or aromatics, are chemical compounds that contain conjugated planar ring systems with delocalized pi electron clouds instead of discrete alternating single and double bonds. Typical aromatic compounds are benzene and toluene. They should satisfy Hückel's rule.
Linking benzene rings gives biphenyl, C 6 H 5 –C 6 H 5. Further loss of hydrogen gives "fused" aromatic hydrocarbons, such as naphthalene, anthracene, phenanthrene, and pyrene. The limit of the fusion process is the hydrogen-free allotrope of carbon, graphite. In heterocycles, carbon atoms
A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). [1] Heterocyclic organic chemistry is the branch of organic chemistry dealing with the synthesis, properties, and applications of organic heterocycles .
The simplest aryl group is phenyl, which is made up of a benzene ring with one of its hydrogen atom replaced by some substituent, and has the molecular formula C 6 H 5 −. Note that a phenyl group is not the same as a benzyl group, the latter consisting of a phenyl group attached to a methyl group and a molecular formula of C 6 H 5 CH 2 −. [2]
The term benzylic is used to describe the position of the first carbon bonded to a benzene or other aromatic ring. For example, (C 6 H 5)(CH 3) 2 C + is referred to as a "benzylic" carbocation. The benzyl free radical has the formula C 6 H 5 CH 2 •.