Search results
Results from the WOW.Com Content Network
A circular chromosome is a chromosome in bacteria, archaea, mitochondria, and chloroplasts, in the form of a molecule of circular DNA, unlike the linear chromosome of most eukaryotes. Most prokaryote chromosomes contain a circular DNA molecule. This has the major advantage of having no free ends to the DNA.
Mitochondrial DNA is the small circular chromosome found inside mitochondria. These organelles, found in all eukaryotic cells, are the powerhouse of the cell. [1] The mitochondria, and thus mitochondrial DNA, are passed exclusively from mother to offspring through the egg cell.
Circular DNA is DNA that forms a closed loop and has no ends. Examples include: Plasmids, mobile genetic elements; cccDNA, formed by some viruses inside cell nuclei; Circular bacterial chromosomes; Mitochondrial DNA (mtDNA) Chloroplast DNA (cpDNA), and that of other plastids; Extrachromosomal circular DNA (eccDNA)
DNA usually occurs as linear chromosomes in eukaryotes, and circular chromosomes in prokaryotes. The set of chromosomes in a cell makes up its genome; the human genome has approximately 3 billion base pairs of DNA arranged into 46 chromosomes. [96] The information carried by DNA is held in the sequence of pieces of DNA called genes.
This mechanism is still the leading theory today; however, a second theory suggests that most cpDNA is actually linear and replicates through homologous recombination. It further contends that only a minority of the genetic material is kept in circular chromosomes while the rest is in branched, linear, or other complex structures. [40] [12]
A) Circular bacterial chromosomes contain a cis-acting element, the replicator, that is located at or near replication origins. i) The replicator recruits initiator proteins in a DNA sequence-specific manner, which results in melting of the DNA helix and loading of the replicative helicase onto each of the single DNA strands (ii).
Extrachromosomal circular DNA (eccDNA) is a type of double-stranded circular DNA structure that was first discovered in 1964 by Alix Bassel and Yasuo Hotta. [1] In contrast to previously identified circular DNA structures (e.g., bacterial plasmids, mitochondrial DNA, circular bacterial chromosomes, or chloroplast DNA), eccDNA are circular DNA found in the eukaryotic nuclei of plant and animal ...
Because bacteria have circular chromosomes, termination of replication occurs when the two replication forks meet each other on the opposite end of the parental chromosome. E. coli regulates this process through the use of termination sequences that, when bound by the Tus protein, enable only one direction of replication fork to pass through ...