Search results
Results from the WOW.Com Content Network
Let PQ be a line perpendicular to line OQ defined by angle , drawn from point Q on this line to point P. OQP is a right angle. Let QA be a perpendicular from point A on the x -axis to Q and PB be a perpendicular from point B on the x -axis to P. ∴ {\displaystyle \therefore } OAQ and OBP are right angles.
The reciprocal identities arise as ratios of sides in the triangles where this unit line is no longer the hypotenuse. The triangle shaded blue illustrates the identity 1 + cot 2 θ = csc 2 θ {\displaystyle 1+\cot ^{2}\theta =\csc ^{2}\theta } , and the red triangle shows that tan 2 θ + 1 = sec 2 θ {\displaystyle \tan ^{2 ...
The vertical line test, shown graphically. The abscissa shows the domain of the (to be tested) function. In mathematics, the vertical line test is a visual way to determine if a curve is a graph of a function or not. A function can only have one output, y, for each unique input, x.
Sin(θ), Tan(θ), and 1 are the heights to the line starting from the x-axis, while Cos(θ), 1, and Cot(θ) are lengths along the x-axis starting from the origin. If the acute angle θ is given, then any right triangles that have an angle of θ are similar to each other. This means that the ratio of any two side lengths depends only on θ.
The sine and tangent small-angle approximations are used in relation to the double-slit experiment or a diffraction grating to develop simplified equations like the following, where y is the distance of a fringe from the center of maximum light intensity, m is the order of the fringe, D is the distance between the slits and projection screen ...
The tangent line to a point on a differentiable curve can also be thought of as a tangent line approximation, the graph of the affine function that best approximates the original function at the given point. [3] Similarly, the tangent plane to a surface at a given point is the plane that "just touches" the surface at that point.
Thus each of these angles has a rational value for its half-angle tangent, using tan φ/2 = sin φ / (1 + cos φ). The reverse is also true. If there are two positive angles that sum to 90°, each with a rational half-angle tangent, and the third angle is a right angle then a triangle with these interior angles can be scaled to a
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.