Search results
Results from the WOW.Com Content Network
Nanoparticle drug delivery focuses on maximizing drug efficacy and minimizing cytotoxicity. Fine-tuning nanoparticle properties for effective drug delivery involves addressing the following factors. The surface-area-to-volume ratio of nanoparticles can be altered to allow for more ligand binding to the surface. [4]
Oral is the most common, and the most challenging. Demands for consistent release persist, although developments are being made for drugs to bioadhere to the intestinal tract. Bioadhesion is also being considered for nasal delivery, to prolong the life of the drug within the nose. Drugs can also be transferred through the skin (transdermal).
Other potential applications of magnetic nanoparticles are brain imaging and drug delivery past the blood-brain barrier (BBB) using biodegradable magnetic iron oxide nanoparticles. The scope of this application is the treatment of central nervous system (CNS) disorders by functioning as contrast agents and drug carriers.
Lipid-based carriers include both liposomes and micelles. Examples of gold nanoparticles are gold nanoshells and nanocages. [3] Different types of nanomaterial being used in nanocarriers allows for hydrophobic and hydrophilic drugs to be delivered throughout the body. [5]
Complex drug delivery mechanisms are being developed, including the ability to get drugs through cell membranes and into cell cytoplasm. Triggered response is one way for drug molecules to be used more efficiently. Drugs are placed in the body and only activate on encountering a particular signal. For example, a drug with poor solubility will ...
This means of delivery is largely founded on nanomedicine, which plans to employ nanoparticle-mediated drug delivery in order to combat the downfalls of conventional drug delivery. These nanoparticles would be loaded with drugs and targeted to specific parts of the body where there is solely diseased tissue, thereby avoiding interaction with ...
With the aid of nanoparticle delivery systems, however, studies have shown that some drugs can now cross the BBB, and even exhibit lower toxicity and decrease adverse effects throughout the body. Toxicity is an important concept for pharmacology because high toxicity levels in the body could be detrimental to the patient by affecting other ...
The first time the FDA approved the use of lipid nanoparticles as a drug delivery system was in 2018, when the agency approved the first siRNA drug, Onpattro. [65] Encapsulating the mRNA molecule in lipid nanoparticles was a critical breakthrough for producing viable mRNA vaccines, solving a number of key technical barriers in delivering the ...