Search results
Results from the WOW.Com Content Network
In electronics, cutoff frequency or corner frequency is the frequency either above or below which the power output of a circuit, such as a line, amplifier, or electronic filter has fallen to a given proportion of the power in the passband.
These two lines meet at the corner frequency. From the plot, it can be seen that for frequencies well below the corner frequency, the circuit has an attenuation of 0 dB, corresponding to a unity pass-band gain, i.e. the amplitude of the filter output equals the amplitude of the input.
In electrical engineering and telecommunications, the center frequency of a filter or channel is a measure of a central frequency between the upper and lower cutoff frequencies. It is usually defined as either the arithmetic mean or the geometric mean of the lower cutoff frequency and the upper cutoff frequency of a band-pass system or a band ...
As an example, a telescope having an f /6 objective and imaging at 0.55 micrometers has a spatial cutoff frequency of 303 cycles/millimeter. High-resolution black-and-white film is capable of resolving details on the film as small as 3 micrometers or smaller, thus its cutoff frequency is about 150 cycles/millimeter.
A plot of the frequency response of a Butterworth Lowpass filter, with a cutoff frequency of 2kHz. The transition band, also called the skirt, is a range of frequencies that allows a transition between a passband and a stopband of a signal processing filter. The transition band is defined by a passband and a stopband cutoff frequency or corner ...
The half-power point is the point at which the output power has dropped to half of its peak value; that is, at a level of approximately −3 dB. [1] [a]In filters, optical filters, and electronic amplifiers, [2] the half-power point is also known as half-power bandwidth and is a commonly used definition for the cutoff frequency.
where resistance in ohms and capacitance in farads yields the time constant in seconds or the cutoff frequency in hertz (Hz). The cutoff frequency when expressed as an angular frequency ( ω c = 2 π f c ) {\displaystyle (\omega _{c}{=}2\pi f_{c})} is simply the reciprocal of the time constant.
The cutoff attenuation for Butterworth filters is usually defined to be −3.01 dB. If it is desired to use a different attenuation at the cutoff frequency, then the following factor may be applied to each pole, whereupon the poles will continue to lie on a circle, but the radius will no longer be unity. [8]