Search results
Results from the WOW.Com Content Network
List ranking can equivalently be viewed as performing a prefix sum operation on the given list, in which the values to be summed are all equal to one. The list ranking problem can be used to solve many problems on trees via an Euler tour technique, in which one forms a linked list that includes two copies of each edge of the tree, one in each direction, places the nodes of this list into an ...
In mathematical optimiz. ation, oracle complexity is a standard theoretical framework to study the computational requirements for solving classes of optimization problems. It is suitable for analyzing iterative algorithms which proceed by computing local information about the objective function at various points (such as the function's value, gradient, Hessian etc.).
In language, the status of an item (usually through what is known as "downranking" or "rank-shifting") in relation to the uppermost rank in a clause; for example, in the sentence "I want to eat the cake you made today", "eat" is on the uppermost rank, but "made" is downranked as part of the nominal group "the cake you made today"; this nominal ...
An oracle machine can perform all of the usual operations of a Turing machine, and can also query the oracle to obtain a solution to any instance of the computational problem for that oracle. For example, if the problem is a decision problem for a set A of natural numbers, the oracle machine supplies the oracle with a natural number, and the ...
There is an algorithmic problem studied in group theory, known as the rank problem. The problem asks, for a particular class of finitely presented groups if there exists an algorithm that, given a finite presentation of a group from the class, computes the rank of that group. The rank problem is one of the harder algorithmic problems studied in ...
In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.
In computability theory, a Turing reduction from a decision problem to a decision problem is an oracle machine that decides problem given an oracle for (Rogers 1967, Soare 1987). It can be understood as an algorithm that could be used to solve A {\displaystyle A} if it had available to it a subroutine for solving B {\displaystyle B} .
The problem is that, if we pick the "wrong" maximum-cardinality matching for rank 1, then we might miss the optimal matching for rank 2. The algorithm of [ 2 ] solves this problem using the Dulmage–Mendelsohn decomposition , which is a decomposition that uses a maximum-cardinality matching, but does not depend on which matching is chosen (the ...