Search results
Results from the WOW.Com Content Network
In mathematical optimiz. ation, oracle complexity is a standard theoretical framework to study the computational requirements for solving classes of optimization problems. It is suitable for analyzing iterative algorithms which proceed by computing local information about the objective function at various points (such as the function's value, gradient, Hessian etc.).
In language, the status of an item (usually through what is known as "downranking" or "rank-shifting") in relation to the uppermost rank in a clause; for example, in the sentence "I want to eat the cake you made today", "eat" is on the uppermost rank, but "made" is downranked as part of the nominal group "the cake you made today"; this nominal ...
In other words, if a language is defined based on some oracle in C, then we can assume that it is defined based on a complete problem for C. Complete problems therefore act as "representatives" of the class for which they are complete. The Sipser–Lautemann theorem states that the class BPP is contained in the second level of the polynomial ...
Starting with Rado (1942), "independence functions" or "-functions" have been studied as one of many equivalent ways of axiomatizing matroids.An independence function maps a set of matroid elements to the number if the set is independent or if it is dependent; that is, it is the indicator function of the family of independent sets, essentially the same thing as an independence oracle.
In statistics, ranking is the data transformation in which numerical or ordinal values are replaced by their rank when the data are sorted.. For example, if the numerical data 3.4, 5.1, 2.6, 7.3 are observed, the ranks of these data items would be 2, 3, 1 and 4 respectively.
An oracle machine can perform all of the usual operations of a Turing machine, and can also query the oracle to obtain a solution to any instance of the computational problem for that oracle. For example, if the problem is a decision problem for a set A of natural numbers, the oracle machine supplies the oracle with a natural number, and the ...
In mathematics, low-rank approximation refers to the process of approximating a given matrix by a matrix of lower rank. More precisely, it is a minimization problem, in which the cost function measures the fit between a given matrix (the data) and an approximating matrix (the optimization variable), subject to a constraint that the approximating matrix has reduced rank.
Simon's problem considers access to a function : {,} {,}, as implemented by a black box or an oracle. This function is promised to be either a one-to-one function, or a two-to-one function; if is two-to-one, it is furthermore promised that two inputs and ′ evaluate to the same value if and only if and ′ differ in a fixed set of bits. I.e.,