Search results
Results from the WOW.Com Content Network
Sentences without any logical connectives or quantifiers in them are known as atomic sentences; by analogy to atomic formula. Sentences are then built up out of atomic sentences by applying connectives and quantifiers. A set of sentences is called a theory; thus, individual sentences may be called theorems.
In logic, a quantifier is an operator that specifies how many individuals in the domain of discourse satisfy an open formula. For instance, the universal quantifier ∀ {\displaystyle \forall } in the first order formula ∀ x P ( x ) {\displaystyle \forall xP(x)} expresses that everything in the domain satisfies the property denoted by P ...
Example requires a quantifier over predicates, which cannot be implemented in single-sorted first-order logic: Zj → ∃X(Xj∧Xp). Quantification over properties Santa Claus has all the attributes of a sadist. Example requires quantifiers over predicates, which cannot be implemented in single-sorted first-order logic: ∀X(∀x(Sx → Xx) → ...
Formulas in logic are typically built up recursively from some propositional variables, some number of logical connectives, and some logical quantifiers. Propositional variables are the atomic formulas of propositional logic, and are often denoted using capital roman letters such as P {\displaystyle P} , Q {\displaystyle Q} and R {\displaystyle ...
The semantics are defined so that, rather than having a separate domain for each higher-type quantifier to range over, the quantifiers instead range over all objects of the appropriate type. The logics studied before the development of first-order logic, for example Frege's logic, had similar set-theoretic aspects.
An open formula is a formula that contains at least one free variable. [citation needed] An open formula does not have a truth value assigned to it, in contrast with a closed formula which constitutes a proposition and thus can have a truth value like true or false. An open formula can be transformed into a closed formula by applying a ...
Tarski's axioms for geometry is a logical system whose sentences can all be written in universal–existential form, a special case of the prenex normal form that has every universal quantifier preceding any existential quantifier, so that all sentences can be rewritten in the form … , where is a sentence that does not contain any quantifier.
In logic, linear temporal logic or linear-time temporal logic [1] [2] (LTL) is a modal temporal logic with modalities referring to time. In LTL, one can encode formulae about the future of paths, e.g., a condition will eventually be true, a condition will be true until another fact becomes true, etc.