enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radioactivity in the life sciences - Wikipedia

    en.wikipedia.org/wiki/Radioactivity_in_the_life...

    A good example of the difference in energy of the various radionuclei is the detection window ranges used to detect them, which are generally proportional to the energy of the emission, but vary from machine to machine: in a Perkin elmer TriLux Beta scintillation counter , the hydrogen-3 energy range window is between channel 5–360; carbon-14 ...

  3. Half-life - Wikipedia

    en.wikipedia.org/wiki/Half-life

    Note the consequence of the law of large numbers: with more atoms, the overall decay is more regular and more predictable. A half-life often describes the decay of discrete entities, such as radioactive atoms. In that case, it does not work to use the definition that states "half-life is the time required for exactly half of the entities to decay".

  4. Radioactive decay - Wikipedia

    en.wikipedia.org/wiki/Radioactive_decay

    Radioactive decay is a random process at the level of single atoms. According to quantum theory, it is impossible to predict when a particular atom will decay, regardless of how long the atom has existed. [2] [3] [4] However, for a significant number of identical atoms, the overall decay rate can be expressed as a decay constant or as a half-life.

  5. Hydrogen cycle - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_cycle

    The hydrogen cycle consists of hydrogen exchanges between biotic (living) and abiotic (non-living) sources and sinks of hydrogen-containing compounds. Hydrogen (H) is the most abundant element in the universe. [1] On Earth, common H-containing inorganic molecules include water (H 2 O), hydrogen gas (H 2), hydrogen sulfide (H 2 S), and ammonia ...

  6. Biological roles of the elements - Wikipedia

    en.wikipedia.org/wiki/Biological_roles_of_the...

    A large fraction of the chemical elements that occur naturally on the Earth's surface are essential to the structure and metabolism of living things. Four of these elements (hydrogen, carbon, nitrogen, and oxygen) are essential to every living thing and collectively make up 99% of the mass of protoplasm. [1]

  7. Atomic physics - Wikipedia

    en.wikipedia.org/wiki/Atomic_physics

    The total energy of an electron in the nth orbit is: E_n = -\frac{13.6}{n^2} \ \text{eV}, where 13.6 \ \text{eV} is the ground-state energy of the hydrogen atom. 4.Emission or Absorption of Energy: •Electrons can transition between orbits by absorbing or emitting energy equal to the difference between the energy levels:

  8. Glossary of biology - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_biology

    This glossary of biology terms is a list of definitions of fundamental terms and concepts used in biology, the study of life and of living organisms.It is intended as introductory material for novices; for more specific and technical definitions from sub-disciplines and related fields, see Glossary of cell biology, Glossary of genetics, Glossary of evolutionary biology, Glossary of ecology ...

  9. Biochemistry - Wikipedia

    en.wikipedia.org/wiki/Biochemistry

    Adenine, thymine, and uracil contain two hydrogen bonds, while hydrogen bonds formed between cytosine and guanine are three. Aside from the genetic material of the cell, nucleic acids often play a role as second messengers , as well as forming the base molecule for adenosine triphosphate (ATP), the primary energy-carrier molecule found in all ...