Search results
Results from the WOW.Com Content Network
A common application of series circuit in consumer electronics is in batteries, where several cells connected in series are used to obtain a convenient operating voltage. Two disposable zinc cells in series might power a flashlight or remote control at 3 volts; the battery pack for a hand-held power tool might contain a dozen lithium-ion cells ...
The DC wire resistance is an important parameter in transformer and general inductor design because it contributes to the impedance of the component, and current flowing through that resistance is dissipated as waste heat, and energy is lost from the circuit. It can be modeled as a resistor in series with the inductor, often leading to the DC ...
Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.
In direct current (DC) circuits, this product is equal to the real power, measured in watts. [3] The volt-ampere is dimensionally equivalent to the watt: in SI units, 1 V⋅A = 1 W. VA rating is most used for generators and transformers, and other power handling equipment, where loads may be reactive (inductive or capacitive).
The red curve shows the power in the load, normalized relative to its maximum possible. The dark blue curve shows the efficiency η. The efficiency η is the ratio of the power dissipated by the load resistance R L to the total power dissipated by the circuit (which includes the voltage source's resistance of R S as well as R L):
A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. [1] A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source.
The current entering any junction is equal to the current leaving that junction. i 2 + i 3 = i 1 + i 4. This law, also called Kirchhoff's first law, or Kirchhoff's junction rule, states that, for any node (junction) in an electrical circuit, the sum of currents flowing into that node is equal to the sum of currents flowing out of that node; or equivalently:
In electronics, it is common to refer to a circuit that is powered by a DC voltage source such as a battery or the output of a DC power supply as a DC circuit even though what is meant is that the circuit is DC powered. In a DC circuit, a power source (e.g. a battery, capacitor, etc.) has a positive and negative terminal, and likewise, the load ...