Search results
Results from the WOW.Com Content Network
Superheating can occur when an undisturbed container of water is heated in a microwave oven. At the time the container is removed, the lack of nucleation sites prevents boiling, leaving the surface calm. However, once the water is disturbed, some of it violently flashes to steam, potentially spraying boiling water out of the container. [6]
The transition from solid to liquid, and gas to liquid (shown by the white condensed water vapour). Other phase changes include: Transition to a mesophase between solid and liquid, such as one of the "liquid crystal" phases. The dependence of the adsorption geometry on coverage and temperature, such as for hydrogen on iron (110).
Departure from nucleate boiling (DNB) occurs in sub-cooled flows and bubbly flow regimes. DNB happens when many bubbles near the heated surface coalesce and impede the ability of local liquid to reach the surface. The mass of vapor between the heated surface and local liquid may be referred to as a vapor blanket. Dryout
The commonly known phases solid, liquid and vapor are separated by phase boundaries, i.e. pressure–temperature combinations where two phases can coexist. At the triple point, all three phases can coexist. However, the liquid–vapor boundary terminates in an endpoint at some critical temperature T c and critical pressure p c. This is the ...
The heat can be removed by channeling the liquid through a heat exchanger, such as a radiator, or the heat can be removed with the liquid during evaporation. [10] Water or glycol coolants are used to keep engines from overheating. [11] The coolants used in nuclear reactors include water or liquid metals, such as sodium or bismuth. [12]
Leidenfrost droplet Demonstration of the Leidenfrost effect Leidenfrost effect of a single drop of water. The Leidenfrost effect is a physical phenomenon in which a liquid, close to a solid surface of another body that is significantly hotter than the liquid's boiling point, produces an insulating vapor layer that keeps the liquid from boiling rapidly.
For example, when water is heated on a stove, hot water from the bottom of the pan is displaced (or forced up) by the colder denser liquid, which falls. After heating has stopped, mixing and conduction from this natural convection eventually result in a nearly homogeneous density, and even temperature.
In liquid, this occurs because it exchanges heat with colder liquid through direct exchange. In the example of the Earth's atmosphere, this occurs because it radiates heat. Because of this heat loss the fluid becomes denser than the fluid underneath it, which is still rising. Since it cannot descend through the rising fluid, it moves to one side.