Search results
Results from the WOW.Com Content Network
Increasing the pressure always increases the density of a material. Increasing the temperature generally decreases the density, but there are notable exceptions to this generalization. For example, the density of water increases between its melting point at 0 °C and 4 °C; similar behavior is observed in silicon at low temperatures.
Some quantities are known as several different names such as the magnetic B-field which is known as the magnetic flux density, the magnetic induction or simply as the magnetic field depending on the context. Similarly, surface tension can be denoted by either σ, γ or T. The table usually lists only one name and symbol that is most commonly used.
For example, the mass of a sample is an extensive quantity; it depends on the amount of substance. The related intensive quantity is the density which is independent of the amount. The density of water is approximately 1g/mL whether you consider a drop of water or a swimming pool, but the mass is different in the two cases.
Relative density can be calculated directly by measuring the density of a sample and dividing it by the (known) density of the reference substance. The density of the sample is simply its mass divided by its volume. Although mass is easy to measure, the volume of an irregularly shaped sample can be more difficult to ascertain.
Examples of characteristic properties include melting points, boiling points, density, viscosity, solubility, Crystal structure and crystal shape. Substances with characteristic properties can be separated. For example, in fractional distillation, liquids are separated using the boiling point. The water Boiling point is 212 degrees Fahrenheit.
For example, mass is an intrinsic property of any physical object, whereas weight is an extrinsic property that depends on the strength of the gravitational field in which the object is placed. Applications in science and engineering
An intensive property does not depend on the size or extent of the system, nor on the amount of matter in the object, while an extensive property shows an additive relationship. These classifications are in general only valid in cases when smaller subdivisions of the sample do not interact in some physical or chemical process when combined.
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.