Search results
Results from the WOW.Com Content Network
The near field refers to places nearby the antenna conductors, or inside any polarizable media surrounding it, where the generation and emission of electromagnetic waves can be interfered with while the field lines remain electrically attached to the antenna, hence absorption of radiation in the near field by adjacent conducting objects detectably affects the loading on the signal generator ...
The far-field pattern of an antenna may be determined experimentally at an antenna range, or alternatively, the near-field pattern may be found using a near-field scanner, and the radiation pattern deduced from it by computation. [1] The far-field radiation pattern can also be calculated from the antenna shape by computer programs such as NEC.
Antennas are required by any radio receiver or transmitter to couple its electrical connection to the electromagnetic field. [10] Radio waves are electromagnetic waves which carry signals through the air (or through space) at the speed of light with almost no transmission loss. An automobile's whip antenna, a common example of an ...
The electric field of the electromagnetic wave radiated by an antenna formed by wires is the sum of all the electric fields radiated by all the small elements of current. This addition is complicated by the fact that the direction and phase of each of the electric fields are, in general, different.
An EMF meter is a scientific instrument for measuring electromagnetic fields (abbreviated as EMF). Most meters measure the electromagnetic radiation flux density (DC fields) or the change in an electromagnetic field over time (AC fields), essentially the same as a radio antenna, but with quite different detection characteristics.
Radio-frequency (RF) engineering is a subset of electrical engineering involving the application of transmission line, waveguide, antenna, radar, and electromagnetic field principles to the design and application of devices that produce or use signals within the radio band, the frequency range of about 20 kHz up to 300 GHz.
The image antenna is used in calculating electric field vectors, magnetic field vectors, and electromagnetic fields emanating from the real antenna, particularly in the vicinity of the antenna and along the ground. Each charge and current in the real antenna has its counterpart in the image, and may also be considered as a source of radiation.
A changing electromagnetic field which is physically close to currents and charges (see near and far field for a definition of "close") will have a dipole characteristic that is dominated by either a changing electric dipole, or a changing magnetic dipole. This type of dipole field near sources is called an electromagnetic near-field.