Search results
Results from the WOW.Com Content Network
A heuristic evaluation is a usability inspection method for computer software that helps to identify usability problems in the user interface design. It specifically involves evaluators examining the interface and judging its compliance with recognized usability principles (the " heuristics ").
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
Heuristic evaluation is a usability engineering method for finding and assessing usability problems in a user interface design as part of an iterative design process. It involves having a small set of evaluators examining the interface and using recognized usability principles (the "heuristics").
In computer science, beam search is a heuristic search algorithm that explores a graph by expanding the most promising node in a limited set. Beam search is a modification of best-first search that reduces its memory requirements. Best-first search is a graph search which orders all partial solutions (states) according to some heuristic.
A heuristic evaluation or usability audit is an evaluation of an interface by one or more human factors experts. Evaluators measure the usability, efficiency, and effectiveness of the interface based on usability principles, such as the 10 usability heuristics originally defined by Jakob Nielsen in 1994.
Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...
A cognitive walkthrough is task-specific, whereas heuristic evaluation takes a holistic view to catch problems not caught by this and other usability inspection methods. The method is rooted in the notion that users typically prefer to learn a system by using it to accomplish tasks, rather than, for example, studying a manual.
Because a constraint satisfaction problem can be interpreted as a local search problem when all the variables have an assigned value (called a complete state), the min conflicts algorithm can be seen as a repair heuristic [2] that chooses the state with the minimum number of conflicts.