Search results
Results from the WOW.Com Content Network
Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if another player loses. A constant sum game can be converted into a zero sum game by subtracting a fixed value from all payoffs, leaving their relative order unchanged.
Let be the number of players, the set of action profiles over the action sets of each player and : be the payoff function for player .. Given a game = (, = …,:), we say that is a potential game with an exact (weighted, ordinal, generalized ordinal, best response) potential function if : is an exact (weighted, ordinal, generalized ordinal, best response, respectively) potential function for .
The "gauge covariant" version of a gauge theory accounts for this effect by introducing a gauge field (in mathematical language, an Ehresmann connection) and formulating all rates of change in terms of the covariant derivative with respect to this connection. The gauge field becomes an essential part of the description of a mathematical ...
A particular choice of the scalar and vector potentials is a gauge (more precisely, gauge potential) and a scalar function ψ used to change the gauge is called a gauge function. [citation needed] The existence of arbitrary numbers of gauge functions ψ(r, t) corresponds to the U(1) gauge freedom of this theory. Gauge fixing can be done in many ...
The vector field is invariant to gauge transformations and the choice of appropriate potentials known as gauge fixing is the subject of gauge theory. Important examples from physics are the Lorenz gauge condition and the Coulomb gauge. An alternative is to use the poloidal–toroidal decomposition.
If a gauge transformation θ is applied to the electron waves, for example, then one must also apply a corresponding transformation to the potentials that describe the electromagnetic waves. [18] Gauge symmetry is required in order to make quantum electrodynamics a renormalizable theory, i.e., one in which the calculated predictions of all ...
In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.
If ϕ is a velocity potential, then ϕ + f(t) is also a velocity potential for u, where f(t) is a scalar function of time and can be constant. Velocity potentials are unique up to a constant, or a function solely of the temporal variable. The Laplacian of a velocity potential is equal to the divergence of the corresponding flow.