Search results
Results from the WOW.Com Content Network
In mathematics, sine and cosine are trigonometric functions of an angle.The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side opposite that angle to the length of the longest side of the triangle (the hypotenuse), and the cosine is the ratio of the length of the adjacent leg to that of the ...
Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.
Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.
In mathematics, the values of the trigonometric functions can be expressed approximately, as in (/), or exactly, as in (/) = /.While trigonometric tables contain many approximate values, the exact values for certain angles can be expressed by a combination of arithmetic operations and square roots.
Fig. 1a – Sine and cosine of an angle θ defined using the unit circle Indication of the sign and amount of key angles according to rotation direction. Trigonometric ratios can also be represented using the unit circle, which is the circle of radius 1 centered at the origin in the plane. [37]
For example, the sine of angle θ is defined as being the length of the opposite side divided by the length of the hypotenuse. The six trigonometric functions are defined for every real number , except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°).
Some slide rules, such as the K&E Deci-Lon in the photo, calibrate to be accurate for radian conversion, at 5.73 degrees (off by nearly 0.4% for the tangent and 0.2% for the sine for angles around 5 degrees). Others are calibrated to 5.725 degrees, to balance the sine and tangent errors at below 0.3%.
One advantage of this old sexagesimal subunit is that many angles common in simple geometry are measured as a whole number of degrees. Fractions of a degree may be written in normal decimal notation (e.g., 3.5° for three and a half degrees), but the "minute" and "second" sexagesimal subunits of the "degree–minute–second" system (discussed ...