enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stereochemistry - Wikipedia

    en.wikipedia.org/wiki/Stereochemistry

    Stereochemistry, a subdiscipline of chemistry, studies the spatial arrangement of atoms that form the structure of molecules and their manipulation. [1] The study of stereochemistry focuses on the relationships between stereoisomers, which are defined as having the same molecular formula and sequence of bonded atoms (constitution) but differing in the geometric positioning of the atoms in space.

  3. Neurochemistry - Wikipedia

    en.wikipedia.org/wiki/Neurochemistry

    Neurochemistry is the study of chemicals, including neurotransmitters and other molecules such as psychopharmaceuticals and neuropeptides, that control and influence the physiology of the nervous system.

  4. Stereospecificity - Wikipedia

    en.wikipedia.org/wiki/Stereospecificity

    The quality of stereospecificity is focused on the reactants and their stereochemistry; it is concerned with the products too, but only as they provide evidence of a difference in behavior between reactants. Of stereoisomeric reactants, each behaves in its own specific way. Stereospecificity towards enantiomers is called enantiospecificity.

  5. Stereoisomerism - Wikipedia

    en.wikipedia.org/wiki/Stereoisomerism

    Two kinds of stereoisomers. In stereochemistry, stereoisomerism, or spatial isomerism, is a form of isomerism in which molecules have the same molecular formula and sequence of bonded atoms (constitution), but differ in the three-dimensional orientations of their atoms in space.

  6. Stereocenter - Wikipedia

    en.wikipedia.org/wiki/Stereocenter

    Two enantiomers of a generic amino acid at the stereocenter. In stereochemistry, a stereocenter of a molecule is an atom (center), axis or plane that is the focus of stereoisomerism; that is, when having at least three different groups bound to the stereocenter, interchanging any two different groups creates a new stereoisomer.

  7. Electronic effect - Wikipedia

    en.wikipedia.org/wiki/Electronic_effect

    In organic chemistry, the term stereoelectronic effect is also used to emphasize the relation between the electronic structure and the geometry (stereochemistry) of a molecule. The term polar effect is sometimes used to refer to electronic effects, but also may have the more narrow definition of effects resulting from non-conjugated substituents.

  8. Topicity - Wikipedia

    en.wikipedia.org/wiki/Topicity

    Enantiotopic groups are identical and indistinguishable except in chiral environments. For instance, the CH 2 hydrogens in ethanol (CH 3 CH 2 OH) are normally enantiotopic, but can be made different (diastereotopic) if combined with a chiral center, for instance by conversion to an ester of a chiral carboxylic acid such as lactic acid, or if coordinated to a chiral metal center, or if ...

  9. Stereoelectronic effect - Wikipedia

    en.wikipedia.org/wiki/Stereoelectronic_effect

    In chemistry, primarily organic and computational chemistry, a stereoelectronic effect [1] is an effect on molecular geometry, reactivity, or physical properties due to spatial relationships in the molecules' electronic structure, in particular the interaction between atomic and/or molecular orbitals. [2]