enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Neutral axis - Wikipedia

    en.wikipedia.org/wiki/Neutral_axis

    Therefore the neutral axis lies on the centroid of the cross section. Note that the neutral axis does not change in length when under bending. It may seem counterintuitive at first, but this is because there are no bending stresses in the neutral axis. However, there are shear stresses (τ) in the neutral axis, zero in the middle of the span ...

  3. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/Euler–Bernoulli_beam_theory

    Here, is the distance from the neutral axis to a point of interest; and is the bending moment. Note that this equation implies that pure bending (of positive sign) will cause zero stress at the neutral axis, positive (tensile) stress at the "top" of the beam, and negative (compressive) stress at the bottom of the beam; and also implies that the ...

  4. Neutral plane - Wikipedia

    en.wikipedia.org/wiki/Neutral_plane

    An evenly loaded beam, bending (sagging) under load. The neutral plane is shown by the dotted line. In mechanics, the neutral plane or neutral surface is a conceptual plane within a beam or cantilever. When loaded by a bending force, the beam bends so that the inner surface is in compression and the outer surface is in tension.

  5. Section modulus - Wikipedia

    en.wikipedia.org/wiki/Section_modulus

    In solid mechanics and structural engineering, section modulus is a geometric property of a given cross-section used in the design of beams or flexural members.Other geometric properties used in design include: area for tension and shear, radius of gyration for compression, and second moment of area and polar second moment of area for stiffness.

  6. Bending - Wikipedia

    en.wikipedia.org/wiki/Bending

    where is the Young's modulus, is the area moment of inertia of the cross-section, (,) is the deflection of the neutral axis of the beam, and is mass per unit length of the beam. Free vibrations [ edit ]

  7. Bending (metalworking) - Wikipedia

    en.wikipedia.org/wiki/Bending_(metalworking)

    K-factor is a ratio of the location of the neutral line to the material thickness as defined by t/T where t = location of the neutral line and T = material thickness. The K-factor formula does not take the forming stresses into account but is simply a geometric calculation of the location of the neutral line after the forces are applied and is ...

  8. Plastic bending - Wikipedia

    en.wikipedia.org/wiki/Plastic_bending

    Elementary Elastic Bending theory requires that the bending stress varies linearly with distance from the neutral axis, but plastic bending shows a more accurate and complex stress distribution. The yielded areas of the cross-section will vary somewhere between the yield and ultimate strength of the material.

  9. Beam (structure) - Wikipedia

    en.wikipedia.org/wiki/Beam_(structure)

    In the beam equation, the variable I represents the second moment of area or moment of inertia: it is the sum, along the axis, of dA·r 2, where r is the distance from the neutral axis and dA is a small patch of area. It measures not only the total area of the beam section, but the square of each patch's distance from the axis.