Search results
Results from the WOW.Com Content Network
In nuclear and materials physics, stopping power is the retarding force acting on charged particles, typically alpha and beta particles, due to interaction with matter, resulting in loss of particle kinetic energy. [1] [2] Stopping power is also interpreted as the rate at which a material absorbs the kinetic energy of a charged particle.
At smaller energies, when the ion carries electrons, this reduces its charge effectively, and the stopping power is thus reduced. But even if the atom is fully ionized, corrections are necessary. Bethe found his formula using quantum mechanical perturbation theory. Hence, his result is proportional to the square of the charge z of the particle.
The Taylor KO factor multiplies bullet mass (measured in grains) by muzzle velocity (measured in feet per second) by bullet diameter (measured in inches) and then divides the product by 7,000, converting the value from grains to pounds and giving a numerical value from 0 to ~150 for normal hunting cartridges.
As the input parameters, it needs the ion type and energy (in the range 10 eV – 2 GeV) and the material of one or several target layers. As the output, it lists or plots the three-dimensional distribution of the ions in the solid and its parameters, such as penetration depth, its spread along the ion beam (called straggle) and perpendicular to it, all target atom cascades in the target are ...
Stopping power is the ability of a weapon – typically a ranged weapon such as a firearm – to cause a target (human or animal) to be incapacitated or immobilized. Stopping power contrasts with lethality in that it pertains only to a weapon's ability to make the target cease action, regardless of whether or not death ultimately occurs.
A small change in friction causes an exponential change in self assist. In many common brakes, a slight increase in friction can lead to wheel lockup with even light application. For example, on damp mornings, drum brakes can lock on first application, skidding to a stop even after the brake pedal has been released.
Control charts are graphical plots used in production control to determine whether quality and manufacturing processes are being controlled under stable conditions. (ISO 7870-1) [1] The hourly status is arranged on the graph, and the occurrence of abnormalities is judged based on the presence of data that differs from the conventional trend or deviates from the control limit line.
A key example of an optimal stopping problem is the secretary problem. Optimal stopping problems can often be written in the form of a Bellman equation, and are therefore often solved using dynamic programming.