enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Seventh power - Wikipedia

    en.wikipedia.org/wiki/Seventh_power

    In arithmetic and algebra, the seventh power of a number n is the result of multiplying seven instances of n together. So: n 7 = n × n × n × n × n × n × n. Seventh powers are also formed by multiplying a number by its sixth power, the square of a number by its fifth power, or the cube of a number by its fourth power.

  3. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to the 5".

  4. Powerful number - Wikipedia

    en.wikipedia.org/wiki/Powerful_number

    2 = 3 35 2 10 = 13 33 7 18 = 19 2 − 7 3 = 3 5 − 15 2. It had been conjectured that 6 cannot be so represented, and Golomb conjectured that there are infinitely many integers which cannot be represented as a difference between two powerful numbers. However, Narkiewicz showed that 6 can be so represented in infinitely many ways such as

  5. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    [2] [3] Thus, in the expression 1 + 2 × 3, the multiplication is performed before addition, and the expression has the value 1 + (2 × 3) = 7, and not (1 + 2) × 3 = 9. When exponents were introduced in the 16th and 17th centuries, they were given precedence over both addition and multiplication and placed as a superscript to the right of ...

  6. Fifth power (algebra) - Wikipedia

    en.wikipedia.org/wiki/Fifth_power_(algebra)

    In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is:

  7. Knuth's up-arrow notation - Wikipedia

    en.wikipedia.org/wiki/Knuth's_up-arrow_notation

    The sequence starts with a unary operation (the successor function with n = 0), and continues with the binary operations of addition (n = 1), multiplication (n = 2), exponentiation (n = 3), tetration (n = 4), pentation (n = 5), etc. Various notations have been used to represent hyperoperations.

  8. Kummer's theorem - Wikipedia

    en.wikipedia.org/wiki/Kummer's_theorem

    To compute the largest power of 2 dividing the binomial coefficient () write m = 3 and n − m = 7 in base p = 2 as 3 = 11 2 and 7 = 111 2.Carrying out the addition 11 2 + 111 2 = 1010 2 in base 2 requires three carries:

  9. Sums of powers - Wikipedia

    en.wikipedia.org/wiki/Sums_of_powers

    In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.