Search results
Results from the WOW.Com Content Network
Just as in muscle cells, myosin can contract different parts of the cytoplasm to change its shape or structure. Myosin-driven contractility in embryonic tissue morphogenesis is seen during the separation of germ layers in the model organisms Caenorhabditis elegans , Drosophila and zebrafish .
Differentiation dramatically changes a cell's size, shape, membrane potential, metabolic activity, and responsiveness to signals. These changes are largely due to highly controlled modifications in gene expression and are the study of epigenetics. With a few exceptions, cellular differentiation almost never involves a change in the DNA sequence ...
Mitotic cell rounding is a shape change that occurs in most animal cells that undergo mitosis. Cells abandon the spread or elongated shape characteristic of interphase and contract into a spherical morphology during mitosis.
Metaplasia occurs when a cell of a certain type is replaced by another cell type, which may be less differentiated. It is a reversible process thought to be caused by stem cell reprogramming. Stem cells are found in epithelia and embryonic mesenchyme of connective tissue. A prominent example of metaplasia involves the changes associated with ...
Cell shape changes through mitosis for a typical animal cell cultured on a flat surface. The cell undergoes mitotic cell rounding during spindle assembly and then divides via cytokinesis. The actomyosin cortex is depicted in red, DNA/chromosomes purple, microtubules green, and membrane and retraction fibers in black. Rounding also occurs in ...
Cell division orientation is one of the mechanisms that shapes tissue during development and morphogenesis. Along with cell shape changes, cell rearrangements, apoptosis and growth, oriented cell division modifies the geometry and topology of live tissue in order to create new organs and shape the organisms.
It generally involves drastic changes in cell shape which are driven by the cytoskeleton. Two very distinct migration scenarios are crawling motion (most commonly studied) and blebbing motility. [ 4 ] [ 5 ] A paradigmatic example of crawling motion is the case of fish epidermal keratocytes, which have been extensively used in research and teaching.
In biochemistry, a conformational change is a change in the shape of a macromolecule, often induced by environmental factors. A macromolecule is usually flexible and dynamic. Its shape can change in response to changes in its environment or other factors; each possible shape is called a conformation, and a transition between them is called a ...