Search results
Results from the WOW.Com Content Network
Example of a naive Bayes classifier depicted as a Bayesian Network. In statistics, naive Bayes classifiers are a family of linear "probabilistic classifiers" which assumes that the features are conditionally independent, given the target class. The strength (naivety) of this assumption is what gives the classifier its name.
Standard examples of each, all of which are linear classifiers, are: generative classifiers: naive Bayes classifier and; linear discriminant analysis; discriminative model: logistic regression; In application to classification, one wishes to go from an observation x to a label y (or probability distribution on labels
This section discusses strategies of extending the existing binary classifiers to solve multi-class classification problems. Several algorithms have been developed based on neural networks, decision trees, k-nearest neighbors, naive Bayes, support vector machines and extreme learning machines to address multi-class classification problems ...
Logistic regression is used in various fields, including machine learning, most medical fields, and social sciences. For example, the Trauma and Injury Severity Score (), which is widely used to predict mortality in injured patients, was originally developed by Boyd et al. using logistic regression. [6]
In particular, learning in a naive Bayes classifier is a simple matter of counting up the number of co-occurrences of features and classes, while in a maximum entropy classifier the weights, which are typically maximized using maximum a posteriori (MAP) estimation, must be learned using an iterative procedure; see #Estimating the coefficients.
However, this loss function is non-convex and non-smooth, and solving for the optimal solution is an NP-hard combinatorial optimization problem. [4] As a result, it is better to substitute loss function surrogates which are tractable for commonly used learning algorithms, as they have convenient properties such as being convex and smooth.
Any logarithm base can be used, since one can be converted to another by multiplying by a fixed constant. [1] Logarithmic growth is the inverse of exponential growth and is very slow. [2] A familiar example of logarithmic growth is a number, N, in positional notation, which grows as log b (N), where b is the base of the number system used, e.g ...
This statistics -related article is a stub. You can help Wikipedia by expanding it.