enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Torch (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Torch_(machine_learning)

    It is divided into modular objects that share a common Module interface. Modules have a forward() and backward() method that allow them to feedforward and backpropagate , respectively. Modules can be joined using module composites , like Sequential , Parallel and Concat to create complex task-tailored graphs.

  3. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  4. List object - Wikipedia

    en.wikipedia.org/wiki/List_object

    A list object over an object A of C is: an object L A, a morphism o A : 1 → L A, and; a morphism s A : A × L A → L A; such that for any object B of C with maps b : 1 → B and t : A × B → B, there exists a unique f : L A → B such that the following diagram commutes:

  5. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    As hand-crafting weights defeats the purpose of machine learning, the model must compute the attention weights on its own. Taking analogy from the language of database queries, we make the model construct a triple of vectors: key, query, and value. The rough idea is that we have a "database" in the form of a list of key-value pairs.

  6. k shortest path routing - Wikipedia

    en.wikipedia.org/wiki/K_shortest_path_routing

    Another example is the use of k shortest paths algorithm to track multiple objects. The technique implements a multiple object tracker based on the k shortest paths routing algorithm. A set of probabilistic occupancy maps is used as input. An object detector provides the input.

  7. PyTorch Lightning - Wikipedia

    en.wikipedia.org/wiki/PyTorch_Lightning

    PyTorch Lightning is an open-source Python library that provides a high-level interface for PyTorch, a popular deep learning framework. [1] It is a lightweight and high-performance framework that organizes PyTorch code to decouple research from engineering, thus making deep learning experiments easier to read and reproduce.

  8. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    TensorFlow and PyTorch, by far the most popular machine learning libraries, [20] as of 2023 largely only include Adam-derived optimizers, as well as predecessors to Adam such as RMSprop and classic SGD. PyTorch also partially supports Limited-memory BFGS, a line-search method, but only for single-device setups without parameter groups. [19] [21]

  9. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.