Search results
Results from the WOW.Com Content Network
Specifically, the theorem says that if the action has an infinite-dimensional Lie algebra of infinitesimal symmetries parameterized linearly by k arbitrary functions and their derivatives up to order m, then the functional derivatives of L satisfy a system of k differential equations. Noether's second theorem is sometimes used in gauge theory.
Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law.This is the first of two theorems (see Noether's second theorem) published by the mathematician Emmy Noether in 1918. [1]
Envelope theorem (calculus of variations) Isoperimetric theorem (curves, calculus of variations) Minimax theorem (game theory) Mountain pass theorem (calculus of variations) Noether's second theorem (calculus of variations, physics) Parthasarathy's theorem (game theory) Sion's minimax theorem (game theory) Tonelli's theorem (functional analysis)
An example of the use of calculus in mechanics is Newton's second law of motion, which states that the derivative of an object's momentum concerning time equals the net force upon it. Alternatively, Newton's second law can be expressed by saying that the net force equals the object's mass times its acceleration , which is the time derivative of ...
Her work on differential invariants in the calculus of variations, Noether's theorem, has been called "one of the most important mathematical theorems ever proved in guiding the development of modern physics". [11] In the second epoch (1920–1926), she began work that "changed the face of [abstract] algebra". [12]
An application of the second isomorphism theorem identifies projective linear groups: for example, the group on the complex projective line starts with setting = (), the group of invertible 2 × 2 complex matrices, = (), the subgroup of determinant 1 matrices, and the normal subgroup of scalar matrices = {():}, we have = {}, where is ...
This is an accepted version of this page This is the latest accepted revision, reviewed on 6 February 2025. Law of physics and chemistry This article is about the law of conservation of energy in physics. For sustainable energy resources, see Energy conservation. Part of a series on Continuum mechanics J = − D d φ d x {\displaystyle J=-D{\frac {d\varphi }{dx}}} Fick's laws of diffusion Laws ...
Being Lagrangian symmetries, gauge symmetries of a Lagrangian satisfy Noether's first theorem, but the corresponding conserved current takes a particular superpotential form = + where the first term vanishes on solutions of the Euler–Lagrange equations and the second one is a boundary term, where is called a superpotential.